AI prompts
base on SD.Next: All-in-one for AI generative image <div align="center">
<img src="https://github.com/vladmandic/sdnext/raw/master/html/logo-transparent.png" width=200 alt="SD.Next">
**Image Diffusion implementation with advanced features**


[](https://discord.gg/VjvR2tabEX)
[](https://github.com/sponsors/vladmandic)
[Docs](https://vladmandic.github.io/sdnext-docs/) | [Wiki](https://github.com/vladmandic/sdnext/wiki) | [Discord](https://discord.gg/VjvR2tabEX) | [Changelog](CHANGELOG.md)
</div>
</br>
## Table of contents
- [Documentation](https://vladmandic.github.io/sdnext-docs/)
- [SD.Next Features](#sdnext-features)
- [Model support](#model-support)
- [Platform support](#platform-support)
- [Getting started](#getting-started)
## SD.Next Features
All individual features are not listed here, instead check [ChangeLog](CHANGELOG.md) for full list of changes
- Fully localized:
▹ **English | Chinese | Russian | Spanish | German | French | Italian | Portuguese | Japanese | Korean**
- Multiple UIs!
▹ **Standard | Modern**
- Multiple [diffusion models](https://vladmandic.github.io/sdnext-docs/Model-Support/)!
- Built-in Control for Text, Image, Batch and video processing!
- Multiplatform!
▹ **Windows | Linux | MacOS | nVidia | AMD | IntelArc/IPEX | DirectML | OpenVINO | ONNX+Olive | ZLUDA**
- Platform specific autodetection and tuning performed on install
- Optimized processing with latest `torch` developments with built-in support for model compile, quantize and compress
Compile backends: *Triton | StableFast | DeepCache | OneDiff | TeaCache | etc.*
Quantization and compression methods: *BitsAndBytes | TorchAO | Optimum-Quanto | NNCF*
- **Interrogate/Captioning** with 150+ **OpenCLiP** models and 20+ built-in **VLMs**
- Built-in queue management
- Built in installer with automatic updates and dependency management
- Mobile compatible
<br>
*Main interface using **StandardUI***:

*Main interface using **ModernUI***:

For screenshots and informations on other available themes, see [Themes](https://vladmandic.github.io/sdnext-docs/Themes/)
<br>
## Model support
SD.Next supports broad range of models: [supported models](https://vladmandic.github.io/sdnext-docs/Model-Support/) and [model specs](https://vladmandic.github.io/sdnext-docs/Models/)
## Platform support
- *nVidia* GPUs using **CUDA** libraries on both *Windows and Linux*
- *AMD* GPUs using **ROCm** libraries on *Linux*
Support will be extended to *Windows* once AMD releases ROCm for Windows
- *Intel Arc* GPUs using **OneAPI** with *IPEX XPU* libraries on both *Windows and Linux*
- Any GPU compatible with *DirectX* on *Windows* using **DirectML** libraries
This includes support for AMD GPUs that are not supported by native ROCm libraries
- Any GPU or device compatible with **OpenVINO** libraries on both *Windows and Linux*
- *Apple M1/M2* on *OSX* using built-in support in Torch with **MPS** optimizations
- *ONNX/Olive*
- *AMD* GPUs on Windows using **ZLUDA** libraries
Plus Docker container receipes for: [CUDA, ROCm, Intel IPEX and OpenVINO](https://vladmandic.github.io/sdnext-docs/Docker/)
## Getting started
- Get started with **SD.Next** by following the [installation instructions](https://vladmandic.github.io/sdnext-docs/Installation/)
- For more details, check out [advanced installation](https://vladmandic.github.io/sdnext-docs/Advanced-Install/) guide
- List and explanation of [command line arguments](https://vladmandic.github.io/sdnext-docs/CLI-Arguments/)
- Install walkthrough [video](https://www.youtube.com/watch?v=nWTnTyFTuAs)
> [!TIP]
> And for platform specific information, check out
> [WSL](https://vladmandic.github.io/sdnext-docs/WSL/) | [Intel Arc](https://vladmandic.github.io/sdnext-docs/Intel-ARC/) | [DirectML](https://vladmandic.github.io/sdnext-docs/DirectML/) | [OpenVINO](https://vladmandic.github.io/sdnext-docs/OpenVINO/) | [ONNX & Olive](https://vladmandic.github.io/sdnext-docs/ONNX-Runtime/) | [ZLUDA](https://vladmandic.github.io/sdnext-docs/ZLUDA/) | [AMD ROCm](https://vladmandic.github.io/sdnext-docs/AMD-ROCm/) | [MacOS](https://vladmandic.github.io/sdnext-docs/MacOS-Python/) | [nVidia](https://vladmandic.github.io/sdnext-docs/nVidia/) | [Docker](https://vladmandic.github.io/sdnext-docs/Docker/)
> [!WARNING]
> If you run into issues, check out [troubleshooting](https://vladmandic.github.io/sdnext-docs/Troubleshooting/) and [debugging](https://vladmandic.github.io/sdnext-docs/Debug/) guides
### Contributing
Please see [Contributing](CONTRIBUTING) for details on how to contribute to this project
And for any question, reach out on [Discord](https://discord.gg/VjvR2tabEX) or open an [issue](https://github.com/vladmandic/sdnext/issues) or [discussion](https://github.com/vladmandic/sdnext/discussions)
### Credits
- Main credit goes to [Automatic1111 WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) for the original codebase
- Additional credits are listed in [Credits](https://github.com/AUTOMATIC1111/stable-diffusion-webui/#credits)
- Licenses for modules are listed in [Licenses](html/licenses.html)
### Evolution
<a href="https://star-history.com/#vladmandic/sdnext&Date">
<picture width=640>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=vladmandic/sdnext&type=Date&theme=dark" />
<img src="https://api.star-history.com/svg?repos=vladmandic/sdnext&type=Date" alt="starts" width="320">
</picture>
</a>
- [OSS Stats](https://ossinsight.io/analyze/vladmandic/sdnext#overview)
### Docs
If you're unsure how to use a feature, best place to start is [Docs](https://vladmandic.github.io/sdnext-docs/) and if its not there,
check [ChangeLog](https://vladmandic.github.io/sdnext-docs/CHANGELOG/) for when feature was first introduced as it will always have a short note on how to use it
<br>
", Assign "at most 3 tags" to the expected json: {"id":"10460","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"