AI prompts
base on Official Implementation of Self-Supervised Street Gaussians for Autonomous Driving # <i>S</i><sup>3</sup>Gaussian: Self-Supervised Street Gaussians for Autonomous Driving
### [Paper](https://arxiv.org/abs/2405.20323) | [Project Page](https://wzzheng.net/S3Gaussian)
> <i>S</i><sup>3</sup>Gaussian: Self-Supervised Street Gaussians for Autonomous Driving
> [Nan Huang](https://github.com/nnanhuang)\*, [Xiaobao Wei](https://ucwxb.github.io/), [Wenzhao Zheng](https://wzzheng.net/)$^\dagger$, Pengju An, [Ming Lu](https://lu-m13.github.io/), [Wei Zhan](https://zhanwei.site/), [Masayoshi Tomizuka](https://me.berkeley.edu/people/masayoshi-tomizuka/), [Kurt Keutzer](https://people.eecs.berkeley.edu/~keutzer/), [Shanghang Zhang](https://www.shanghangzhang.com/)$^\ddagger$
\* Work done while interning at UC Berkeley $\dagger$ Project leader $\ddagger$ Corresponding author
<i>S</i><sup>3</sup>Gaussian employs 3D Gaussians to model dynamic scenes for autonomous driving ***without*** other supervisions (e.g., 3D bounding boxes).
![vis](./assets/vis2.png)
## News
- **[2023/5/31]** Training & evaluation code release!
- **[2024/5/31]** Paper released on [arXiv](https://arxiv.org/abs/2405.20323).
## Demo
![demo](./assets/visual.gif)
## Overview
![overview](./assets/pipeline.png)
To tackle the challenges in self-supervised street scene decomposition, we propose a multi-resolution hexplane-based encoder to encode 4D grid into feature planes and a multi-head Gaussian decoder to decode them into deformed 4D Gaussians. We optimize the overall model without extra annotations in a self-supervised manner and achieve superior scene decomposition ability and rendering quality.
## Results
![overview](./assets/results.png)
## Getting Started
### Environmental Setups
Our code is developed on Ubuntu 22.04 using Python 3.9 and pytorch=1.13.1+cu116. We also tested on pytorch=2.2.1+cu118. We recommend using conda for the installation of dependencies.
```bash
git clone https://github.com/nnanhuang/S3Gaussian.git --recursive
cd S3Gaussian
conda create -n S3Gaussian python=3.9
conda activate S3Gaussian
pip install -r requirements.txt
pip install -e submodules/depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn
```
### Preparing Dataset
Follow detailed instructions in [Prepare Dataset](docs/prepare_data.md).
We only use dynamic32 and static32 split.
### Training
For training first clip (eg. 0-50 frames), run
```
python train.py -s $data_dir --port 6017 --expname "waymo" --model_path $model_path
```
If you want to try novel view synthesis, use
```
--configs "arguments/nvs.py"
```
For instance, you can try:
```
python train.py -s "./data/processed/dynamic32/training/022" --expname "waymo" --model_path "./work_dirs/phase1/dynamic/recon/022"
```
For training next clip (eg. 51-100 frames), run
```
python train.py -s $data_dir --port 6017 --expname "waymo" --model_path $model_path --prior_checkpoint "$prior_dir/chkpnt_fine_50000.pth" --configs "arguments/stage2.py"
```
For instance, you can try:
```
python train.py -s "./data/processed/dynamic32/training/022" --expname "waymo" --model_path "./work_dirs/phase1/dynamic/recon/p2/022" --prior_checkpoint "./work_dirs/phase1/dynamic/recon/022/chkpnt_fine_50000.pth" --configs "arguments/stage2.py"
```
Also, you can load an existing checkpoint with:
```python
python train.py -s $data_dir --port 6017 --expname "waymo" --start_checkpoint "$ckpt_dir/chkpnt_fine_30000.pth" --model_path $model_path
```
For more scripts examples, please check [here](scripts).
### Evaluation and Visualization
You can visualize and eval a checkpoints follow:
```python
python train.py -s $data_dir --port 6017 --expname "waymo" --start_checkpoint "$ckpt_dir/chkpnt_fine_50000.pth" --model_path $model_path --eval_only
```
If you use different configs, you will need to add them as well:
```
--configs "arguments/nvs.py"
```
Then you can get rendering RGB videos, ground truth RGB videos, depth videos, dynamic rgb videos and static rgb videos.
## Acknowledgments
Credits to @[Korace0v0](https://github.com/korace0v0) for building 3D Gaussians for street scenes. Many thanks!
Special thanks to [StreetGaussians](https://github.com/zju3dv/street_gaussians) for sharing visualization results!
Our code is based on [4D Gaussians](https://github.com/hustvl/4DGaussians/tree/master) and [EmerNeRF](https://github.com/NVlabs/EmerNeRF?tab=readme-ov-file).
Thanks to these excellent open-sourced repos!
## Citation
If you find this project helpful, please consider citing the following paper:
```
@article{huang2024s3gaussian,
title={S3Gaussian: Self-Supervised Street Gaussians for Autonomous Driving},
author={Huang, Nan and Wei, Xiaobao and Zheng, Wenzhao and An, Pengju and Lu, Ming and Zhan, Wei and Tomizuka, Masayoshi and Keutzer, Kurt and Zhang, Shanghang},
journal={arXiv preprint arXiv:2405.20323},
year={2024}
}
```
", Assign "at most 3 tags" to the expected json: {"id":"10643","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"