AI prompts
base on Jlama is a modern LLM inference engine for Java # π¦ Jlama: A modern LLM inference engine for Java
<p align="center">
<img src="docs/jlama.jpg" width="300" height="300" alt="Cute Jlama">
</p>
[![Maven Central Version](https://img.shields.io/maven-central/v/com.github.tjake/jlama-parent?style=flat-square)](https://central.sonatype.com/artifact/com.github.tjake/jlama-core/overview)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)
[![Discord](https://img.shields.io/discord/1279855254812229642?style=flat-square&label=Discord&color=663399)](https://discord.gg/HsYXHrMu6J)
## π Features
Model Support:
* Gemma & Gemma 2 Models
* Llama & Llama2 & Llama3 Models
* Mistral & Mixtral Models
* Qwen2 Models
* IBM Granite Models
* GPT-2 Models
* BERT Models
* BPE Tokenizers
* WordPiece Tokenizers
Implements:
* Paged Attention
* Mixture of Experts
* Tool Calling
* Generate Embeddings
* Classifier Support
* Huggingface [SafeTensors](https://github.com/huggingface/safetensors) model and tokenizer format
* Support for F32, F16, BF16 types
* Support for Q8, Q4 model quantization
* Fast GEMM operations
* Distributed Inference!
Jlama requires Java 20 or later and utilizes the new [Vector API](https://openjdk.org/jeps/448)
for faster inference.
## π€ What is it used for?
Add LLM Inference directly to your Java application.
## π¬ Quick Start
### π΅οΈββοΈ How to use as a local client (with jbang!)
Jlama includes a command line tool that makes it easy to use.
The CLI can be run with [jbang](https://www.jbang.dev/download/).
```shell
#Install jbang (or https://www.jbang.dev/download/)
curl -Ls https://sh.jbang.dev | bash -s - app setup
#Install Jlama CLI (will ask if you trust the source)
jbang app install --force jlama@tjake
```
Now that you have jlama installed you can download a model from huggingface and chat with it.
Note I have pre-quantized models available at https://hf.co/tjake
```shell
# Run the openai chat api and UI on a model
jlama restapi tjake/Llama-3.2-1B-Instruct-JQ4 --auto-download
```
open browser to http://localhost:8080/
<p align="center">
<img src="docs/demo.png" alt="Demo chat">
</p>
```shell
Usage:
jlama [COMMAND]
Description:
Jlama is a modern LLM inference engine for Java!
Quantized models are maintained at https://hf.co/tjake
Choose from the available commands:
Inference:
chat Interact with the specified model
restapi Starts a openai compatible rest api for interacting with this model
complete Completes a prompt using the specified model
Distributed Inference:
cluster-coordinator Starts a distributed rest api for a model using cluster workers
cluster-worker Connects to a cluster coordinator to perform distributed inference
Other:
download Downloads a HuggingFace model - use owner/name format
list Lists local models
quantize Quantize the specified model
```
### π¨βπ» How to use in your Java project
The main purpose of Jlama is to provide a simple way to use large language models in Java.
The simplest way to embed Jlama in your app is with the [Langchain4j Integration](https://github.com/langchain4j/langchain4j-examples/tree/main/jlama-examples).
If you would like to embed Jlama without langchain4j, add the following [maven](https://central.sonatype.com/artifact/com.github.tjake/jlama-core/) dependencies to your project:
```xml
<dependency>
<groupId>com.github.tjake</groupId>
<artifactId>jlama-core</artifactId>
<version>${jlama.version}</version>
</dependency>
<dependency>
<groupId>com.github.tjake</groupId>
<artifactId>jlama-native</artifactId>
<!-- supports linux-x86_64, macos-x86_64/aarch_64, windows-x86_64
Use https://github.com/trustin/os-maven-plugin to detect os and arch -->
<classifier>${os.detected.name}-${os.detected.arch}</classifier>
<version>${jlama.version}</version>
</dependency>
```
jlama uses Java 21 preview features. You can enable the features globally with:
```shell
export JDK_JAVA_OPTIONS="--add-modules jdk.incubator.vector --enable-preview"
```
or enable the preview features by configuring maven compiler and failsafe plugins.
Then you can use the Model classes to run models:
```java
public void sample() throws IOException {
String model = "tjake/Llama-3.2-1B-Instruct-JQ4";
String workingDirectory = "./models";
String prompt = "What is the best season to plant avocados?";
// Downloads the model or just returns the local path if it's already downloaded
File localModelPath = new Downloader(workingDirectory, model).huggingFaceModel();
// Loads the quantized model and specified use of quantized memory
AbstractModel m = ModelSupport.loadModel(localModelPath, DType.F32, DType.I8);
PromptContext ctx;
// Checks if the model supports chat prompting and adds prompt in the expected format for this model
if (m.promptSupport().isPresent()) {
ctx = m.promptSupport()
.get()
.builder()
.addSystemMessage("You are a helpful chatbot who writes short responses.")
.addUserMessage(prompt)
.build();
} else {
ctx = PromptContext.of(prompt);
}
System.out.println("Prompt: " + ctx.getPrompt() + "\n");
// Generates a response to the prompt and prints it
// The api allows for streaming or non-streaming responses
// The response is generated with a temperature of 0.7 and a max token length of 256
Generator.Response r = m.generate(UUID.randomUUID(), ctx, 0.0f, 256, (s, f) -> {});
System.out.println(r.responseText);
}
```
## β Give us a Star!
If you like or are using this project to build your own, please give us a star. It's a free way to show your support.
## πΊοΈ Roadmap
* Support more and more models
* <s>Add pure java tokenizers</s>
* <s>Support Quantization (e.g. k-quantization)</s>
* Add LoRA support
* GraalVM support
* <s>Add distributed inference</s>
## π·οΈ License and Citation
The code is available under [Apache License](./LICENSE).
If you find this project helpful in your research, please cite this work at
```
@misc{jlama2024,
title = {Jlama: A modern Java inference engine for large language models},
url = {https://github.com/tjake/jlama},
author = {T Jake Luciani},
month = {January},
year = {2024}
}
```
", Assign "at most 3 tags" to the expected json: {"id":"10674","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"