base on A Python framework for accelerated simulation, data generation and spatial computing. [![PyPI version](https://badge.fury.io/py/warp-lang.svg)](https://badge.fury.io/py/warp-lang) [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) ![GitHub commit activity](https://img.shields.io/github/commit-activity/m/NVIDIA/warp?link=https%3A%2F%2Fgithub.com%2FNVIDIA%2Fwarp%2Fcommits%2Fmain) [![Downloads](https://static.pepy.tech/badge/warp-lang/month)](https://pepy.tech/project/warp-lang) [![codecov](https://codecov.io/github/NVIDIA/warp/graph/badge.svg?token=7O1KSM79FG)](https://codecov.io/github/NVIDIA/warp) ![GitHub - CI](https://github.com/NVIDIA/warp/actions/workflows/ci.yml/badge.svg) [![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?logo=discord&logoColor=white)](https://discord.com/invite/nvidiaomniverse) # NVIDIA Warp Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU. Warp is designed for [spatial computing](https://en.wikipedia.org/wiki/Spatial_computing) and comes with a rich set of primitives that make it easy to write programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch, JAX and Paddle. Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md) for release history. <div align="center"> <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg"> <p><i>A selection of physical simulations computed with Warp</i></p> </div> ## Installing Python version 3.9 or newer is recommended. Warp can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS. GPU support requires a CUDA-capable NVIDIA GPU and driver (minimum GeForce GTX 9xx). The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/): ```text pip install warp-lang ``` You can also use `pip install warp-lang[extras]` to install additional dependencies for running examples and USD-related features. The binaries hosted on PyPI are currently built with the CUDA 12 runtime and therefore require a minimum version of the CUDA driver of 525.60.13 (Linux x86-64) or 528.33 (Windows x86-64). If you require GPU support on a system with an older CUDA driver, you can build Warp from source or install wheels built with the CUDA 11.8 runtime from the [GitHub Releases](https://github.com/NVIDIA/warp/releases) page. Copy the URL of the appropriate wheel file (`warp-lang-{ver}+cu12-py3-none-{platform}.whl`) and pass it to the `pip install` command, e.g. | Platform | Install Command | | --------------- | ----------------------------------------------------------------------------------------------------------------------------- | | Linux aarch64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.7.2.post1/warp_lang-1.7.2+cu11-py3-none-manylinux2014_aarch64.whl` | | Linux x86-64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.7.2.post1/warp_lang-1.7.2+cu11-py3-none-manylinux2014_x86_64.whl` | | Windows x86-64 | `pip install https://github.com/NVIDIA/warp/releases/download/v1.7.2.post1/warp_lang-1.7.2+cu11-py3-none-win_amd64.whl` | The `--force-reinstall` option may need to be used to overwrite a previous installation. ### Nightly Builds Nightly builds of Warp from the `main` branch are available on the [NVIDIA Package Index](https://pypi.nvidia.com/warp-lang/). To install the latest nightly build, use the following command: ```text pip install -U --pre warp-lang --extra-index-url=https://pypi.nvidia.com/ ``` Note that the nightly builds are built with the CUDA 12 runtime and are not published for macOS. If you plan to install nightly builds regularly, you can simplify future installations by adding NVIDIA's package repository as an extra index via the `PIP_EXTRA_INDEX_URL` environment variable. For example: ```text export PIP_EXTRA_INDEX_URL="https://pypi.nvidia.com" ``` This ensures the index is automatically used for `pip` commands, avoiding the need to specify it explicitly. ### CUDA Requirements * Warp packages built with CUDA Toolkit 11.x require NVIDIA driver 470 or newer. * Warp packages built with CUDA Toolkit 12.x require NVIDIA driver 525 or newer. This applies to pre-built packages distributed on PyPI and GitHub and also when building Warp from source. Note that building Warp with the `--quick` flag changes the driver requirements. The quick build skips CUDA backward compatibility, so the minimum required driver is determined by the CUDA Toolkit version. Refer to the [latest CUDA Toolkit release notes](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html) to find the minimum required driver for different CUDA Toolkit versions (e.g., [this table from CUDA Toolkit 12.6](https://docs.nvidia.com/cuda/archive/12.6.0/cuda-toolkit-release-notes/index.html#id5)). Warp checks the installed driver during initialization and will report a warning if the driver is not suitable, e.g.: ```text Warp UserWarning: Insufficient CUDA driver version. The minimum required CUDA driver version is 12.0, but the installed CUDA driver version is 11.8. Visit https://github.com/NVIDIA/warp/blob/main/README.md#installing for guidance. ``` This will make CUDA devices unavailable, but the CPU can still be used. To remedy the situation there are a few options: * Update the driver. * Install a compatible pre-built Warp package. * Build Warp from source using a CUDA Toolkit that's compatible with the installed driver. ## Getting Started An example first program that computes the lengths of random 3D vectors is given below: ```python import warp as wp import numpy as np num_points = 1024 @wp.kernel def length(points: wp.array(dtype=wp.vec3), lengths: wp.array(dtype=float)): # thread index tid = wp.tid() # compute distance of each point from origin lengths[tid] = wp.length(points[tid]) # allocate an array of 3d points points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3) lengths = wp.zeros(num_points, dtype=float) # launch kernel wp.launch(kernel=length, dim=len(points), inputs=[points, lengths]) print(lengths) ``` ## Running Notebooks A few notebooks are available in the [notebooks](./notebooks/) directory to provide an overview over the key features available in Warp. To run these notebooks, ``jupyterlab`` is required to be installed using: ```text pip install jupyterlab ``` From there, opening the notebooks can be done with the following command: ```text jupyter lab ./notebooks ``` * [Warp Core Tutorial: Basics](./notebooks/core_01_basics.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_01_basics.ipynb) * [Warp Core Tutorial: Generics](./notebooks/core_02_generics.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_02_generics.ipynb) * [Warp Core Tutorial: Points](./notebooks/core_03_points.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_03_points.ipynb) * [Warp Core Tutorial: Meshes](./notebooks/core_04_meshes.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_04_meshes.ipynb) * [Warp Core Tutorial: Volumes](./notebooks/core_05_volumes.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/core_05_volumes.ipynb) * [Warp PyTorch Tutorial: Basics](./notebooks/pytorch_01_basics.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/pytorch_01_basics.ipynb) * [Warp PyTorch Tutorial: Custom Operators](./notebooks/pytorch_02_custom_operators.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NVIDIA/warp/blob/main/notebooks/pytorch_02_custom_operators.ipynb) ## Running Examples The [warp/examples](./warp/examples/) directory contains a number of scripts categorized under subdirectories that show how to implement various simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations in the current working directory. Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using: ```text pip install warp-lang[extras] ``` These dependencies can also be manually installed using: ```text pip install usd-core matplotlib pyglet ``` Examples can be run from the command-line as follows: ```text python -m warp.examples.<example_subdir>.<example> ``` To browse the example source code, you can open the directory where the files are located like this: ```text python -m warp.examples.browse ``` Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script. USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations. Built-in unit tests can be run from the command-line as follows: ```text python -m warp.tests ``` ### warp/examples/core <table> <tbody> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_dem.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_fluid.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_graph_capture.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_marching_cubes.png"></a></td> </tr> <tr> <td align="center">dem</td> <td align="center">fluid</td> <td align="center">graph capture</td> <td align="center">marching cubes</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_mesh.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_nvdb.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_raycast.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_raymarch.png"></a></td> </tr> <tr> <td align="center">mesh</td> <td align="center">nvdb</td> <td align="center">raycast</td> <td align="center">raymarch</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sample_mesh.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_sample_mesh.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_sph.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_torch.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/core_wave.png"></a></td> </tr> <tr> <td align="center">sample mesh</td> <td align="center">sph</td> <td align="center">torch</td> <td align="center">wave</td> </tr> </tbody> </table> ### warp/examples/fem <table> <tbody> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_diffusion_3d.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_mixed_elasticity.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_apic_fluid.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_streamlines.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_streamlines.png"></a></td> </tr> <tr> <td align="center">diffusion 3d</td> <td align="center">mixed elasticity</td> <td align="center">apic fluid</td> <td align="center">streamlines</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_convection_diffusion.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_convection_diffusion.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_navier_stokes.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_burgers.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_burgers.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_magnetostatics.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/fem_magnetostatics.png"></a></td> </tr> <tr> <td align="center">convection diffusion</td> <td align="center">navier stokes</td> <td align="center">burgers</td> <td align="center">magnetostatics</td> </tr> </tbody> </table> ### warp/examples/optim <table> <tbody> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_bounce.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_cloth_throw.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_diffray.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_drone.png"></a></td> </tr> <tr> <td align="center">bounce</td> <td align="center">cloth throw</td> <td align="center">diffray</td> <td align="center">drone</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_inverse_kinematics.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_spring_cage.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_trajectory.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_softbody_properties.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_softbody_properties.png"></a></td> </tr> <tr> <td align="center">inverse kinematics</td> <td align="center">spring cage</td> <td align="center">trajectory</td> <td align="center">soft body properties</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_fluid_checkpoint.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/optim_fluid_checkpoint.png"></a></td> <td></td> <td></td> <td></td> </tr> <tr> <td align="center">fluid checkpoint</td> <td align="center"></td> <td align="center"></td> <td align="center"></td> </tr> </tbody> </table> ### warp/examples/sim <table> <tbody> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_cartpole.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_cloth.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_granular.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td> </tr> <tr> <td align="center">cartpole</td> <td align="center">cloth</td> <td align="center">granular</td> <td align="center">granular collision sdf</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_jacobian_ik.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_quadruped.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_chain.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_contact.png"></a></td> </tr> <tr> <td align="center">jacobian ik</td> <td align="center">quadruped</td> <td align="center">rigid chain</td> <td align="center">rigid contact</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_force.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_soft_body.png"></a></td> </tr> <tr> <td align="center">rigid force</td> <td align="center">rigid gyroscopic</td> <td align="center">rigid soft contact</td> <td align="center">soft body</td> </tr> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth_self_contact.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/sim_example_cloth_self_contact.png"></a></td> <td></td> <td></td> <td></td> </tr> <tr> <td align="center">cloth self contact</td> <td align="center"></td> <td align="center"></td> <td align="center"></td> </tr> </tbody> </table> ### warp/examples/tile <table> <tbody> <tr> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_mlp.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_mlp.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_nbody.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_nbody.png"></a></td> <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/tile/example_tile_walker.py"><img src="https://media.githubusercontent.com/media/NVIDIA/warp/refs/heads/main/docs/img/examples/tile_walker.png"></a></td> </tr> <tr> <td align="center">mlp</td> <td align="center">nbody</td> <td align="center">walker</td> </tr> </tbody> </table> ## Building For developers who want to build the library themselves, the following tools are required: * Microsoft Visual Studio 2019 upwards (Windows) * GCC 9.4 upwards (Linux) * CUDA Toolkit 11.5 or higher * [Git LFS](https://git-lfs.github.com/) installed After cloning the repository, users should run: ```text python build_lib.py ``` Upon success, the script will output platform-specific binary files in `warp/bin/`. The build script will look for the CUDA Toolkit in its default installation path. This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively, the path to the CUDA Toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using: ```text pip install -e . ``` This ensures that subsequent modifications to the library will be reflected in the Python package. ## Learn More Please see the following resources for additional background on Warp: * [Product Page](https://developer.nvidia.com/warp-python) * [SIGGRAPH 2024 Course Slides](https://dl.acm.org/doi/10.1145/3664475.3664543) * [GTC 2024 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtc24-s63345/) * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599) * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838) * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433) The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications: * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io) * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt) * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io) ## Frequently Asked Questions See the [FAQ](https://nvidia.github.io/warp/faq.html) in the Warp documentation. ## Support Problems, questions, and feature requests can be opened on [GitHub Issues](https://github.com/NVIDIA/warp/issues). The Warp team also monitors the **#warp** forum on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat with us! For inquiries not suited for GitHub Issues or Discord, please email warp-python@nvidia.com. ## Versioning Versions take the format X.Y.Z, similar to [Python itself](https://devguide.python.org/developer-workflow/development-cycle/#devcycle): * Increments in X are reserved for major reworks of the project causing disruptive incompatibility (or reaching the 1.0 milestone). * Increments in Y are for regular releases with a new set of features. * Increments in Z are for bug fixes. In principle, there are no new features. Can be omitted if 0 or not relevant. This is similar to [Semantic Versioning](https://semver.org/) but is less strict regarding backward compatibility. Like with Python, some breaking changes can be present between minor versions if well-documented and gradually introduced. Note that prior to 0.11.0, this schema was not strictly adhered to. ## License Warp is provided under the Apache License, Version 2.0. Please see [LICENSE.md](https://github.com/NVIDIA/warp/blob/main/LICENSE.md) for full license text. ## Contributing Contributions and pull requests from the community are welcome. Please see the [Contribution Guide](https://nvidia.github.io/warp/modules/contribution_guide.html) for more information on contributing to the development of Warp. ## Publications & Citation ### Research Using Warp Our [PUBLICATIONS.md](https://github.com/NVIDIA/warp/blob/main/PUBLICATIONS.md) file lists academic and research publications that leverage the capabilities of Warp. We encourage you to add your own published work using Warp to this list. ### Citing Warp To cite Warp itself in your own publications, please use the following BibTeX entry: ```bibtex @misc{warp2022, title = {Warp: A High-performance Python Framework for GPU Simulation and Graphics}, author = {Miles Macklin}, month = {March}, year = {2022}, note = {NVIDIA GPU Technology Conference (GTC)}, howpublished = {\url{https://github.com/nvidia/warp}} } ``` ", Assign "at most 3 tags" to the expected json: {"id":"10832","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"