AI prompts
base on text and image to video generation: CogVideoX (2024) and CogVideo (ICLR 2023) # CogVideo & CogVideoX
[中文阅读](./README_zh.md)
[日本語で読む](./README_ja.md)
<div align="center">
<img src=resources/logo.svg width="50%"/>
</div>
<p align="center">
Experience the CogVideoX-5B model online at <a href="https://huggingface.co/spaces/THUDM/CogVideoX-5B" target="_blank"> 🤗 Huggingface Space</a> or <a href="https://modelscope.cn/studios/ZhipuAI/CogVideoX-5b-demo" target="_blank"> 🤖 ModelScope Space</a>
</p>
<p align="center">
📚 View the <a href="https://arxiv.org/abs/2408.06072" target="_blank">paper</a> and <a href="https://zhipu-ai.feishu.cn/wiki/DHCjw1TrJiTyeukfc9RceoSRnCh" target="_blank">user guide</a>
</p>
<p align="center">
👋 Join our <a href="resources/WECHAT.md" target="_blank">WeChat</a> and <a href="https://discord.gg/dCGfUsagrD" target="_blank">Discord</a>
</p>
<p align="center">
📍 Visit <a href="https://chatglm.cn/video?lang=en?fr=osm_cogvideo">QingYing</a> and <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">API Platform</a> to experience larger-scale commercial video generation models.
</p>
## Project Updates
- 🔥🔥 **News**: ```2024/11/15```: We released the `CogVideoX1.5` model in the diffusers version. Only minor parameter adjustments are needed to continue using previous code.
- 🔥 News: ```2024/11/08```: We have released the CogVideoX1.5 model. CogVideoX1.5 is an upgraded version of the open-source model CogVideoX.
The CogVideoX1.5-5B series supports 10-second videos with higher resolution, and CogVideoX1.5-5B-I2V supports video generation at any resolution.
The SAT code has already been updated, while the diffusers version is still under adaptation. Download the SAT version code [here](https://huggingface.co/THUDM/CogVideoX1.5-5B-SAT).
- 🔥 **News**: ```2024/10/13```: A more cost-effective fine-tuning framework for `CogVideoX-5B` that works with a single
4090 GPU, [cogvideox-factory](https://github.com/a-r-r-o-w/cogvideox-factory), has been released. It supports
fine-tuning with multiple resolutions. Feel free to use it!
- 🔥 **News**: ```2024/10/10```: We have updated our technical report. Please
click [here](https://arxiv.org/pdf/2408.06072) to view it. More training details and a demo have been added. To see
the demo, click [here](https://yzy-thu.github.io/CogVideoX-demo/).- 🔥 **News**: ```2024/10/09```: We have publicly
released the [technical documentation](https://zhipu-ai.feishu.cn/wiki/DHCjw1TrJiTyeukfc9RceoSRnCh) for CogVideoX
fine-tuning on Feishu, further increasing distribution flexibility. All examples in the public documentation can be
fully reproduced.
- 🔥 **News**: ```2024/9/19```: We have open-sourced the CogVideoX series image-to-video model **CogVideoX-5B-I2V**.
This model can take an image as a background input and generate a video combined with prompt words, offering greater
controllability. With this, the CogVideoX series models now support three tasks: text-to-video generation, video
continuation, and image-to-video generation. Welcome to try it online
at [Experience](https://huggingface.co/spaces/THUDM/CogVideoX-5B-Space).
- 🔥 ```2024/9/19```: The Caption
model [CogVLM2-Caption](https://huggingface.co/THUDM/cogvlm2-llama3-caption), used in the training process of
CogVideoX to convert video data into text descriptions, has been open-sourced. Welcome to download and use it.
- 🔥 ```2024/8/27```: We have open-sourced a larger model in the CogVideoX series, **CogVideoX-5B**. We have
significantly optimized the model's inference performance, greatly lowering the inference threshold.
You can run **CogVideoX-2B** on older GPUs like `GTX 1080TI`, and **CogVideoX-5B** on desktop GPUs like `RTX 3060`. Please strictly
follow the [requirements](requirements.txt) to update and install dependencies, and refer
to [cli_demo](inference/cli_demo.py) for inference code. Additionally, the open-source license for
the **CogVideoX-2B** model has been changed to the **Apache 2.0 License**.
- 🔥 ```2024/8/6```: We have open-sourced **3D Causal VAE**, used for **CogVideoX-2B**, which can reconstruct videos with
almost no loss.
- 🔥 ```2024/8/6```: We have open-sourced the first model of the CogVideoX series video generation models, **CogVideoX-2B
**.
- 🌱 **Source**: ```2022/5/19```: We have open-sourced the CogVideo video generation model (now you can see it in
the `CogVideo` branch). This is the first open-source large Transformer-based text-to-video generation model. You can
access the [ICLR'23 paper](https://arxiv.org/abs/2205.15868) for technical details.
## Table of Contents
Jump to a specific section:
- [Quick Start](#Quick-Start)
- [SAT](#sat)
- [Diffusers](#Diffusers)
- [CogVideoX-2B Video Works](#cogvideox-2b-gallery)
- [Introduction to the CogVideoX Model](#Model-Introduction)
- [Full Project Structure](#project-structure)
- [Inference](#inference)
- [SAT](#sat)
- [Tools](#tools)
- [Introduction to CogVideo(ICLR'23) Model](#cogvideoiclr23)
- [Citations](#Citation)
- [Model License](#Model-License)
## Quick Start
### Prompt Optimization
Before running the model, please refer to [this guide](inference/convert_demo.py) to see how we use large models like
GLM-4 (or other comparable products, such as GPT-4) to optimize the model. This is crucial because the model is trained
with long prompts, and a good prompt directly impacts the quality of the video generation.
### SAT
**Please make sure your Python version is between 3.10 and 3.12, inclusive of both 3.10 and 3.12.**
Follow instructions in [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is
recommended to improve based on the CogVideoX model structure. Innovative researchers use this code to better perform
rapid stacking and development.
### Diffusers
**Please make sure your Python version is between 3.10 and 3.12, inclusive of both 3.10 and 3.12.**
```
pip install -r requirements.txt
```
Then follow [diffusers_demo](inference/cli_demo.py): A more detailed explanation of the inference code, mentioning the
significance of common parameters.
For more details on quantized inference, please refer
to [diffusers-torchao](https://github.com/sayakpaul/diffusers-torchao/). With Diffusers and TorchAO, quantized inference
is also possible leading to memory-efficient inference as well as speedup in some cases when compiled. A full list of
memory and time benchmarks with various settings on A100 and H100 has been published
at [diffusers-torchao](https://github.com/sayakpaul/diffusers-torchao).
## Gallery
### CogVideoX-5B
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td>
<video src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
### CogVideoX-2B
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<tr>
<td>
<video src="https://github.com/user-attachments/assets/ea3af39a-3160-4999-90ec-2f7863c5b0e9" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/9de41efd-d4d1-4095-aeda-246dd834e91d" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/941d6661-6a8d-4a1b-b912-59606f0b2841" width="100%" controls autoplay loop></video>
</td>
<td>
<video src="https://github.com/user-attachments/assets/938529c4-91ae-4f60-b96b-3c3947fa63cb" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
To view the corresponding prompt words for the gallery, please click [here](resources/galary_prompt.md)
## Model Introduction
CogVideoX is an open-source version of the video generation model originating
from [QingYing](https://chatglm.cn/video?lang=en?fr=osm_cogvideo). The table below displays the list of video generation
models we currently offer, along with their foundational information.
<table style="border-collapse: collapse; width: 100%;">
<tr>
<th style="text-align: center;">Model Name</th>
<th style="text-align: center;">CogVideoX1.5-5B (Latest)</th>
<th style="text-align: center;">CogVideoX1.5-5B-I2V (Latest)</th>
<th style="text-align: center;">CogVideoX-2B</th>
<th style="text-align: center;">CogVideoX-5B</th>
<th style="text-align: center;">CogVideoX-5B-I2V</th>
</tr>
<tr>
<td style="text-align: center;">Release Date</td>
<th style="text-align: center;">November 8, 2024</th>
<th style="text-align: center;">November 8, 2024</th>
<th style="text-align: center;">August 6, 2024</th>
<th style="text-align: center;">August 27, 2024</th>
<th style="text-align: center;">September 19, 2024</th>
</tr>
<tr>
<td style="text-align: center;">Video Resolution</td>
<td colspan="1" style="text-align: center;">1360 * 768</td>
<td colspan="1" style="text-align: center;"> Min(W, H) = 768 <br> 768 ≤ Max(W, H) ≤ 1360 <br> Max(W, H) % 16 = 0 </td>
<td colspan="3" style="text-align: center;">720 * 480</td>
</tr>
<tr>
<td style="text-align: center;">Inference Precision</td>
<td colspan="2" style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, Not supported: INT4</td>
<td style="text-align: center;"><b>FP16*(Recommended)</b>, BF16, FP32, FP8*, INT8, Not supported: INT4</td>
<td colspan="2" style="text-align: center;"><b>BF16 (Recommended)</b>, FP16, FP32, FP8*, INT8, Not supported: INT4</td>
</tr>
<tr>
<td style="text-align: center;">Single GPU Memory Usage<br></td>
<td colspan="2" style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 76GB <br><b>diffusers BF16: from 10GB*</b><br><b>diffusers INT8(torchao): from 7GB*</b></td>
<td style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> FP16: 18GB <br><b>diffusers FP16: 4GB minimum* </b><br><b>diffusers INT8 (torchao): 3.6GB minimum*</b></td>
<td colspan="2" style="text-align: center;"><a href="https://github.com/THUDM/SwissArmyTransformer">SAT</a> BF16: 26GB <br><b>diffusers BF16 : 5GB minimum* </b><br><b>diffusers INT8 (torchao): 4.4GB minimum* </b></td>
</tr>
<tr>
<td style="text-align: center;">Multi-GPU Memory Usage</td>
<td colspan="2" style="text-align: center;"><b>BF16: 24GB* using diffusers</b><br></td>
<td style="text-align: center;"><b>FP16: 10GB* using diffusers</b><br></td>
<td colspan="2" style="text-align: center;"><b>BF16: 15GB* using diffusers</b><br></td>
</tr>
<tr>
<td style="text-align: center;">Inference Speed<br>(Step = 50, FP/BF16)</td>
<td colspan="2" style="text-align: center;">Single A100: ~1000 seconds (5-second video)<br>Single H100: ~550 seconds (5-second video)</td>
<td style="text-align: center;">Single A100: ~90 seconds<br>Single H100: ~45 seconds</td>
<td colspan="2" style="text-align: center;">Single A100: ~180 seconds<br>Single H100: ~90 seconds</td>
</tr>
<tr>
<td style="text-align: center;">Prompt Language</td>
<td colspan="5" style="text-align: center;">English*</td>
</tr>
<tr>
<td style="text-align: center;">Prompt Token Limit</td>
<td colspan="2" style="text-align: center;">224 Tokens</td>
<td colspan="3" style="text-align: center;">226 Tokens</td>
</tr>
<tr>
<td style="text-align: center;">Video Length</td>
<td colspan="2" style="text-align: center;">5 seconds or 10 seconds</td>
<td colspan="3" style="text-align: center;">6 seconds</td>
</tr>
<tr>
<td style="text-align: center;">Frame Rate</td>
<td colspan="2" style="text-align: center;">16 frames / second </td>
<td colspan="3" style="text-align: center;">8 frames / second </td>
</tr>
<tr>
<td style="text-align: center;">Position Encoding</td>
<td colspan="2" style="text-align: center;">3d_rope_pos_embed</td>
<td style="text-align: center;">3d_sincos_pos_embed</td>
<td style="text-align: center;">3d_rope_pos_embed</td>
<td style="text-align: center;">3d_rope_pos_embed + learnable_pos_embed</td>
</tr>
<tr>
<td style="text-align: center;">Download Link (Diffusers)</td>
<td style="text-align: center;"><a href="https://huggingface.co/THUDM/CogVideoX1.5-5B">🤗 HuggingFace</a><br><a href="https://modelscope.cn/models/ZhipuAI/CogVideoX1.5-5B">🤖 ModelScope</a><br><a href="https://wisemodel.cn/models/ZhipuAI/CogVideoX1.5-5B">🟣 WiseModel</a></td>
<td style="text-align: center;"><a href="https://huggingface.co/THUDM/CogVideoX1.5-5B-I2V">🤗 HuggingFace</a><br><a href="https://modelscope.cn/models/ZhipuAI/CogVideoX1.5-5B-I2V">🤖 ModelScope</a><br><a href="https://wisemodel.cn/models/ZhipuAI/CogVideoX1.5-5B-I2V">🟣 WiseModel</a></td>
<td style="text-align: center;"><a href="https://huggingface.co/THUDM/CogVideoX-2b">🤗 HuggingFace</a><br><a href="https://modelscope.cn/models/ZhipuAI/CogVideoX-2b">🤖 ModelScope</a><br><a href="https://wisemodel.cn/models/ZhipuAI/CogVideoX-2b">🟣 WiseModel</a></td>
<td style="text-align: center;"><a href="https://huggingface.co/THUDM/CogVideoX-5b">🤗 HuggingFace</a><br><a href="https://modelscope.cn/models/ZhipuAI/CogVideoX-5b">🤖 ModelScope</a><br><a href="https://wisemodel.cn/models/ZhipuAI/CogVideoX-5b">🟣 WiseModel</a></td>
<td style="text-align: center;"><a href="https://huggingface.co/THUDM/CogVideoX-5b-I2V">🤗 HuggingFace</a><br><a href="https://modelscope.cn/models/ZhipuAI/CogVideoX-5b-I2V">🤖 ModelScope</a><br><a href="https://wisemodel.cn/models/ZhipuAI/CogVideoX-5b-I2V">🟣 WiseModel</a></td>
</tr>
<tr>
<td style="text-align: center;">Download Link (SAT)</td>
<td colspan="2" style="text-align: center;"><a href="https://huggingface.co/THUDM/CogVideoX1.5-5b-SAT">🤗 HuggingFace</a><br><a href="https://modelscope.cn/models/ZhipuAI/CogVideoX1.5-5b-SAT">🤖 ModelScope</a><br><a href="https://wisemodel.cn/models/ZhipuAI/CogVideoX1.5-5b-SAT">🟣 WiseModel</a></td>
<td colspan="3" style="text-align: center;"><a href="./sat/README_zh.md">SAT</a></td>
</tr>
</table>
**Data Explanation**
+ While testing using the diffusers library, all optimizations included in the diffusers library were enabled. This
scheme has not been tested for actual memory usage on devices outside of **NVIDIA A100 / H100** architectures.
Generally, this scheme can be adapted to all **NVIDIA Ampere architecture** and above devices. If optimizations are
disabled, memory consumption will multiply, with peak memory usage being about 3 times the value in the table.
However, speed will increase by about 3-4 times. You can selectively disable some optimizations, including:
```
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
```
+ For multi-GPU inference, the `enable_sequential_cpu_offload()` optimization needs to be disabled.
+ Using INT8 models will slow down inference, which is done to accommodate lower-memory GPUs while maintaining minimal
video quality loss, though inference speed will significantly decrease.
+ The CogVideoX-2B model was trained in `FP16` precision, and all CogVideoX-5B models were trained in `BF16` precision.
We recommend using the precision in which the model was trained for inference.
+ [PytorchAO](https://github.com/pytorch/ao) and [Optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be
used to quantize the text encoder, transformer, and VAE modules to reduce the memory requirements of CogVideoX. This
allows the model to run on free T4 Colabs or GPUs with smaller memory! Also, note that TorchAO quantization is fully
compatible with `torch.compile`, which can significantly improve inference speed. FP8 precision must be used on
devices with NVIDIA H100 and above, requiring source installation of `torch`, `torchao` Python packages. CUDA 12.4 is recommended.
+ The inference speed tests also used the above memory optimization scheme. Without memory optimization, inference speed
increases by about 10%. Only the `diffusers` version of the model supports quantization.
+ The model only supports English input; other languages can be translated into English for use via large model
refinement.
## Friendly Links
We highly welcome contributions from the community and actively contribute to the open-source community. The following
works have already been adapted for CogVideoX, and we invite everyone to use them:
+ [CogVideoX-Fun](https://github.com/aigc-apps/CogVideoX-Fun): CogVideoX-Fun is a modified pipeline based on the
CogVideoX architecture, supporting flexible resolutions and multiple launch methods.
+ [CogStudio](https://github.com/pinokiofactory/cogstudio): A separate repository for CogVideo's Gradio Web UI, which
supports more functional Web UIs.
+ [Xorbits Inference](https://github.com/xorbitsai/inference): A powerful and comprehensive distributed inference
framework, allowing you to easily deploy your own models or the latest cutting-edge open-source models with just one
click.
+ [ComfyUI-CogVideoXWrapper](https://github.com/kijai/ComfyUI-CogVideoXWrapper) Use the ComfyUI framework to integrate
CogVideoX into your workflow.
+ [VideoSys](https://github.com/NUS-HPC-AI-Lab/VideoSys): VideoSys provides a user-friendly, high-performance
infrastructure for video generation, with full pipeline support and continuous integration of the latest models and
techniques.
+ [AutoDL Space](https://www.codewithgpu.com/i/THUDM/CogVideo/CogVideoX-5b-demo): A one-click deployment Huggingface
Space image provided by community members.
+ [Interior Design Fine-Tuning Model](https://huggingface.co/collections/bertjiazheng/koolcogvideox-66e4762f53287b7f39f8f3ba):
is a fine-tuned model based on CogVideoX, specifically designed for interior design.
+ [xDiT](https://github.com/xdit-project/xDiT): xDiT is a scalable inference engine for Diffusion Transformers (DiTs)
on multiple GPU Clusters. xDiT supports real-time image and video generations services.
[cogvideox-factory](https://github.com/a-r-r-o-w/cogvideox-factory): A cost-effective
fine-tuning framework for CogVideoX, compatible with the `diffusers` version model. Supports more resolutions, and
fine-tuning CogVideoX-5B can be done with a single 4090 GPU.
+ [CogVideoX-Interpolation](https://github.com/feizc/CogvideX-Interpolation): A pipeline based on the modified CogVideoX
structure, aimed at providing greater flexibility for keyframe interpolation generation.
+ [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio): DiffSynth Studio is a diffusion engine. It has
restructured the architecture, including text encoders, UNet, VAE, etc., enhancing computational performance while
maintaining compatibility with open-source community models. The framework has been adapted for CogVideoX.
+ [CogVideoX-Controlnet](https://github.com/TheDenk/cogvideox-controlnet): A simple ControlNet module code that includes the CogVideoX model.
+ [VideoTuna](https://github.com/VideoVerses/VideoTuna): VideoTuna is the first repo that integrates multiple AI video generation models for text-to-video, image-to-video, text-to-image generation.
+ [ConsisID](https://github.com/PKU-YuanGroup/ConsisID): An identity-preserving text-to-video generation model, bases on CogVideoX-5B, which keep the face consistent in the generated video by frequency decomposition.
## Project Structure
This open-source repository will guide developers to quickly get started with the basic usage and fine-tuning examples
of the **CogVideoX** open-source model.
### Quick Start with Colab
Here provide three projects that can be run directly on free Colab T4 instances:
+ [CogVideoX-5B-T2V-Colab.ipynb](https://colab.research.google.com/drive/1pCe5s0bC_xuXbBlpvIH1z0kfdTLQPzCS?usp=sharing):
CogVideoX-5B Text-to-Video Colab code.
+ [CogVideoX-5B-T2V-Int8-Colab.ipynb](https://colab.research.google.com/drive/1DUffhcjrU-uz7_cpuJO3E_D4BaJT7OPa?usp=sharing):
CogVideoX-5B Quantized Text-to-Video Inference Colab code, which takes about 30 minutes per run.
+ [CogVideoX-5B-I2V-Colab.ipynb](https://colab.research.google.com/drive/17CqYCqSwz39nZAX2YyonDxosVKUZGzcX?usp=sharing):
CogVideoX-5B Image-to-Video Colab code.
+ [CogVideoX-5B-V2V-Colab.ipynb](https://colab.research.google.com/drive/1comfGAUJnChl5NwPuO8Ox5_6WCy4kbNN?usp=sharing):
CogVideoX-5B Video-to-Video Colab code.
### Inference
+ [dcli_demo](inference/cli_demo.py): A more detailed inference code explanation, including the significance of
common parameters. All of this is covered here.
+ [cli_demo_quantization](inference/cli_demo_quantization.py):
Quantized model inference code that can run on devices with lower memory. You can also modify this code to support
running CogVideoX models in FP8 precision.
+ [diffusers_vae_demo](inference/cli_vae_demo.py): Code for running VAE inference separately.
+ [space demo](inference/gradio_composite_demo): The same GUI code as used in the Huggingface Space, with frame
interpolation and super-resolution tools integrated.
<div style="text-align: center;">
<img src="resources/web_demo.png" style="width: 100%; height: auto;" />
</div>
+ [convert_demo](inference/convert_demo.py): How to convert user input into long-form input suitable for CogVideoX.
Since CogVideoX is trained on long texts, we need to transform the input text distribution to match the training data
using an LLM. The script defaults to using GLM-4, but it can be replaced with GPT, Gemini, or any other large language
model.
+ [gradio_web_demo](inference/gradio_composite_demo): A simple Gradio web application demonstrating how to use the
CogVideoX-2B / 5B model to generate videos. Similar to our Huggingface Space, you can use this script to run a simple
web application for video generation.
### finetune
+ [finetune_demo](finetune/README.md): Fine-tuning scheme and details of the diffusers version of the CogVideoX model.
### sat
+ [sat_demo](sat/README.md): Contains the inference code and fine-tuning code of SAT weights. It is recommended to
improve based on the CogVideoX model structure. Innovative researchers use this code to better perform rapid stacking
and development.
### Tools
This folder contains some tools for model conversion / caption generation, etc.
+ [convert_weight_sat2hf](tools/convert_weight_sat2hf.py): Converts SAT model weights to Huggingface model weights.
+ [caption_demo](tools/caption/README.md): Caption tool, a model that understands videos and outputs descriptions in
text.
+ [export_sat_lora_weight](tools/export_sat_lora_weight.py): SAT fine-tuning model export tool, exports the SAT Lora
Adapter in diffusers format.
+ [load_cogvideox_lora](tools/load_cogvideox_lora.py): Tool code for loading the diffusers version of fine-tuned Lora
Adapter.
+ [llm_flux_cogvideox](tools/llm_flux_cogvideox/llm_flux_cogvideox.py): Automatically generate videos using an
open-source local large language model + Flux + CogVideoX.
+ [parallel_inference_xdit](tools/parallel_inference/parallel_inference_xdit.py):
Supported by [xDiT](https://github.com/xdit-project/xDiT), parallelize the
video generation process on multiple GPUs.
## CogVideo(ICLR'23)
The official repo for the
paper: [CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers](https://arxiv.org/abs/2205.15868)
is on the [CogVideo branch](https://github.com/THUDM/CogVideo/tree/CogVideo)
**CogVideo is able to generate relatively high-frame-rate videos.**
A 4-second clip of 32 frames is shown below.
![High-frame-rate sample](https://raw.githubusercontent.com/THUDM/CogVideo/CogVideo/assets/appendix-sample-highframerate.png)
![Intro images](https://raw.githubusercontent.com/THUDM/CogVideo/CogVideo/assets/intro-image.png)
<div align="center">
<video src="https://github.com/user-attachments/assets/2fa19651-e925-4a2a-b8d6-b3f216d490ba" width="80%" controls autoplay></video>
</div>
The demo for CogVideo is at [https://models.aminer.cn/cogvideo](https://models.aminer.cn/cogvideo/), where you can get
hands-on practice on text-to-video generation. *The original input is in Chinese.*
## Citation
🌟 If you find our work helpful, please leave us a star and cite our paper.
```
@article{yang2024cogvideox,
title={CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer},
author={Yang, Zhuoyi and Teng, Jiayan and Zheng, Wendi and Ding, Ming and Huang, Shiyu and Xu, Jiazheng and Yang, Yuanming and Hong, Wenyi and Zhang, Xiaohan and Feng, Guanyu and others},
journal={arXiv preprint arXiv:2408.06072},
year={2024}
}
@article{hong2022cogvideo,
title={CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers},
author={Hong, Wenyi and Ding, Ming and Zheng, Wendi and Liu, Xinghan and Tang, Jie},
journal={arXiv preprint arXiv:2205.15868},
year={2022}
}
```
We welcome your contributions! You can click [here](resources/contribute.md) for more information.
## Model-License
The code in this repository is released under the [Apache 2.0 License](LICENSE).
The CogVideoX-2B model (including its corresponding Transformers module and VAE module) is released under
the [Apache 2.0 License](LICENSE).
The CogVideoX-5B model (Transformers module, include I2V and T2V) is released under
the [CogVideoX LICENSE](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE).
", Assign "at most 3 tags" to the expected json: {"id":"11394","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"