base on Go ahead and axolotl questions <p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/887513285d98132142bf5db2a74eb5e0928787f1/image/axolotl_logo_digital_white.svg">
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/887513285d98132142bf5db2a74eb5e0928787f1/image/axolotl_logo_digital_black.svg">
<img alt="Axolotl" src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/887513285d98132142bf5db2a74eb5e0928787f1/image/axolotl_logo_digital_black.svg" width="400" height="104" style="max-width: 100%;">
</picture>
</p>
<p align="center">
<img src="https://img.shields.io/github/license/axolotl-ai-cloud/axolotl.svg?color=blue" alt="GitHub License">
<img src="https://github.com/axolotl-ai-cloud/axolotl/actions/workflows/tests.yml/badge.svg" alt="tests">
<a href="https://codecov.io/gh/axolotl-ai-cloud/axolotl"><img src="https://codecov.io/gh/axolotl-ai-cloud/axolotl/branch/main/graph/badge.svg" alt="codecov"></a>
<a href="https://github.com/axolotl-ai-cloud/axolotl/releases"><img src="https://img.shields.io/github/release/axolotl-ai-cloud/axolotl.svg" alt="Releases"></a>
<br/>
<a href="https://github.com/axolotl-ai-cloud/axolotl/graphs/contributors"><img src="https://img.shields.io/github/contributors-anon/axolotl-ai-cloud/axolotl?color=yellow&style=flat-square" alt="contributors" style="height: 20px;"></a>
<img src="https://img.shields.io/github/stars/axolotl-ai-cloud/axolotl" alt="GitHub Repo stars">
<br/>
<a href="https://discord.com/invite/HhrNrHJPRb"><img src="https://img.shields.io/badge/discord-7289da.svg?style=flat-square&logo=discord" alt="discord" style="height: 20px;"></a>
<a href="https://twitter.com/axolotl_ai"><img src="https://img.shields.io/twitter/follow/axolotl_ai?style=social" alt="twitter" style="height: 20px;"></a>
<br/>
<img src="https://github.com/axolotl-ai-cloud/axolotl/actions/workflows/tests-nightly.yml/badge.svg" alt="tests-nightly">
<img src="https://github.com/axolotl-ai-cloud/axolotl/actions/workflows/multi-gpu-e2e.yml/badge.svg" alt="multigpu-semi-weekly tests">
</p>
## π Latest Updates
- 2025/06: Magistral with mistral-common tokenizer support has been added to Axolotl. See [examples](https://github.com/axolotl-ai-cloud/axolotl/tree/main/examples/magistral) to start training your own Magistral models with Axolotl!
- 2025/05: Quantization Aware Training (QAT) support has been added to Axolotl. Explore the [docs](https://docs.axolotl.ai/docs/qat.html) to learn more!
- 2025/04: Llama 4 support has been added in Axolotl. See [examples](https://github.com/axolotl-ai-cloud/axolotl/tree/main/examples/llama-4) to start training your own Llama 4 models with Axolotl's linearized version!
- 2025/03: Axolotl has implemented Sequence Parallelism (SP) support. Read the [blog](https://huggingface.co/blog/axolotl-ai-co/long-context-with-sequence-parallelism-in-axolotl) and [docs](https://docs.axolotl.ai/docs/sequence_parallelism.html) to learn how to scale your context length when fine-tuning.
- 2025/03: (Beta) Fine-tuning Multimodal models is now supported in Axolotl. Check out the [docs](https://docs.axolotl.ai/docs/multimodal.html) to fine-tune your own!
- 2025/02: Axolotl has added LoRA optimizations to reduce memory usage and improve training speed for LoRA and QLoRA in single GPU and multi-GPU training (DDP and DeepSpeed). Jump into the [docs](https://docs.axolotl.ai/docs/lora_optims.html) to give it a try.
- 2025/02: Axolotl has added GRPO support. Dive into our [blog](https://huggingface.co/blog/axolotl-ai-co/training-llms-w-interpreter-feedback-wasm) and [GRPO example](https://github.com/axolotl-ai-cloud/grpo_code) and have some fun!
- 2025/01: Axolotl has added Reward Modelling / Process Reward Modelling fine-tuning support. See [docs](https://docs.axolotl.ai/docs/reward_modelling.html).
## β¨ Overview
Axolotl is a tool designed to streamline post-training for various AI models.
Features:
- **Multiple Model Support**: Train various models like LLaMA, Mistral, Mixtral, Pythia, and more. We are compatible with HuggingFace transformers causal language models.
- **Training Methods**: Full fine-tuning, LoRA, QLoRA, GPTQ, QAT, Preference Tuning (DPO, IPO, KTO, ORPO), RL (GRPO), Multimodal, and Reward Modelling (RM) / Process Reward Modelling (PRM).
- **Easy Configuration**: Re-use a single YAML file between dataset preprocess, training, evaluation, quantization, and inference.
- **Performance Optimizations**: [Multipacking](https://docs.axolotl.ai/docs/multipack.html), [Flash Attention](https://github.com/Dao-AILab/flash-attention), [Xformers](https://github.com/facebookresearch/xformers), [Flex Attention](https://pytorch.org/blog/flexattention/), [Liger Kernel](https://github.com/linkedin/Liger-Kernel), [Cut Cross Entropy](https://github.com/apple/ml-cross-entropy/tree/main), Sequence Parallelism (SP), LoRA optimizations, Multi-GPU training (FSDP1, FSDP2, DeepSpeed), Multi-node training (Torchrun, Ray), and many more!
- **Flexible Dataset Handling**: Load from local, HuggingFace, and cloud (S3, Azure, GCP, OCI) datasets.
- **Cloud Ready**: We ship [Docker images](https://hub.docker.com/u/axolotlai) and also [PyPI packages](https://pypi.org/project/axolotl/) for use on cloud platforms and local hardware.
## π Quick Start
**Requirements**:
- NVIDIA GPU (Ampere or newer for `bf16` and Flash Attention) or AMD GPU
- Python 3.11
- PyTorch β₯2.5.1
### Installation
```bash
pip3 install -U packaging==23.2 setuptools==75.8.0 wheel ninja
pip3 install --no-build-isolation axolotl[flash-attn,deepspeed]
# Download example axolotl configs, deepspeed configs
axolotl fetch examples
axolotl fetch deepspeed_configs # OPTIONAL
```
Other installation approaches are described [here](https://docs.axolotl.ai/docs/installation.html).
### Your First Fine-tune
```bash
# Fetch axolotl examples
axolotl fetch examples
# Or, specify a custom path
axolotl fetch examples --dest path/to/folder
# Train a model using LoRA
axolotl train examples/llama-3/lora-1b.yml
```
That's it! Check out our [Getting Started Guide](https://docs.axolotl.ai/docs/getting-started.html) for a more detailed walkthrough.
## π Documentation
- [Installation Options](https://docs.axolotl.ai/docs/installation.html) - Detailed setup instructions for different environments
- [Configuration Guide](https://docs.axolotl.ai/docs/config.html) - Full configuration options and examples
- [Dataset Loading](https://docs.axolotl.ai/docs/dataset_loading.html) - Loading datasets from various sources
- [Dataset Guide](https://docs.axolotl.ai/docs/dataset-formats/) - Supported formats and how to use them
- [Multi-GPU Training](https://docs.axolotl.ai/docs/multi-gpu.html)
- [Multi-Node Training](https://docs.axolotl.ai/docs/multi-node.html)
- [Multipacking](https://docs.axolotl.ai/docs/multipack.html)
- [API Reference](https://docs.axolotl.ai/docs/api/) - Auto-generated code documentation
- [FAQ](https://docs.axolotl.ai/docs/faq.html) - Frequently asked questions
## π€ Getting Help
- Join our [Discord community](https://discord.gg/HhrNrHJPRb) for support
- Check out our [Examples](https://github.com/axolotl-ai-cloud/axolotl/tree/main/examples/) directory
- Read our [Debugging Guide](https://docs.axolotl.ai/docs/debugging.html)
- Need dedicated support? Please contact [βοΈ
[email protected]](mailto:
[email protected]) for options
## π Contributing
Contributions are welcome! Please see our [Contributing Guide](https://github.com/axolotl-ai-cloud/axolotl/blob/main/.github/CONTRIBUTING.md) for details.
## β€οΈ Sponsors
Thank you to our sponsors who help make Axolotl possible:
- [Modal](https://www.modal.com?utm_source=github&utm_medium=github&utm_campaign=axolotl) - Modal lets you run
jobs in the cloud, by just writing a few lines of Python. Customers use Modal to deploy Gen AI models at large scale,
fine-tune large language models, run protein folding simulations, and much more.
Interested in sponsoring? Contact us at [
[email protected]](mailto:
[email protected])
## π License
This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.
", Assign "at most 3 tags" to the expected json: {"id":"11675","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"