AI prompts
base on Open-source end-to-end LLM Development Platform <h1 align="center" style="border-bottom: none">
<div>
<a href="https://www.comet.com/site/products/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=header_img&utm_campaign=opik"><picture>
<source media="(prefers-color-scheme: dark)" srcset="/apps/opik-documentation/documentation/static/img/logo-dark-mode.svg">
<source media="(prefers-color-scheme: light)" srcset="/apps/opik-documentation/documentation/static/img/opik-logo.svg">
<img alt="Comet Opik logo" src="/apps/opik-documentation/documentation/static/img/opik-logo.svg" width="200" />
</picture></a>
<br>
Opik
</div>
Open-source end-to-end LLM Development Platform<br>
</h1>
<p align="center">
Confidently evaluate, test and monitor LLM applications.
</p>
<div align="center">
[![Python SDK](https://img.shields.io/pypi/v/opik)](https://pypi.org/project/opik/)
[![License](https://img.shields.io/github/license/comet-ml/opik)](https://github.com/comet-ml/opik/blob/main/LICENSE)
[![Build](https://github.com/comet-ml/opik/actions/workflows/build_apps.yml/badge.svg)](https://github.com/comet-ml/opik/actions/workflows/build_apps.yml)
<a target="_blank" href="https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/opik_quickstart.ipynb">
<!-- <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Quickstart In Colab"/> -->
</a>
</div>
<p align="center">
<a href="https://www.comet.com/site/products/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=website_button&utm_campaign=opik"><b>Website</b></a> •
<a href="https://chat.comet.com"><b>Slack community</b></a> •
<a href="https://x.com/Cometml"><b>Twitter</b></a> •
<a href="https://www.comet.com/docs/opik/?from=llm&utm_source=opik&utm_medium=github&utm_content=docs_button&utm_campaign=opik"><b>Documentation</b></a>
</p>
![Opik thumbnail](readme-thumbnail.png)
## 🚀 What is Opik?
Opik is an open-source platform for evaluating, testing and monitoring LLM applications. Built by [Comet](https://www.comet.com?from=llm&utm_source=opik&utm_medium=github&utm_content=what_is_opik_link&utm_campaign=opik).
<br>
You can use Opik for:
* **Development:**
* **Tracing:** Track all LLM calls and traces during development and production ([Quickstart](https://www.comet.com/docs/opik/quickstart/?from=llm&utm_source=opik&utm_medium=github&utm_content=quickstart_link&utm_campaign=opik), [Integrations](https://www.comet.com/docs/opik/tracing/integrations/overview/?from=llm&utm_source=opik&utm_medium=github&utm_content=integrations_link&utm_campaign=opik)
* **Annotations:** Annotate your LLM calls by logging feedback scores using the [Python SDK](https://www.comet.com/docs/opik/tracing/annotate_traces/#annotating-traces-and-spans-using-the-sdk?from=llm&utm_source=opik&utm_medium=github&utm_content=sdk_link&utm_campaign=opik) or the [UI](https://www.comet.com/docs/opik/tracing/annotate_traces/#annotating-traces-through-the-ui?from=llm&utm_source=opik&utm_medium=github&utm_content=ui_link&utm_campaign=opik).
* **Evaluation**: Automate the evaluation process of your LLM application:
* **Datasets and Experiments**: Store test cases and run experiments ([Datasets](https://www.comet.com/docs/opik/evaluation/manage_datasets/?from=llm&utm_source=opik&utm_medium=github&utm_content=datasets_link&utm_campaign=opik), [Evaluate your LLM Application](https://www.comet.com/docs/opik/evaluation/evaluate_your_llm/?from=llm&utm_source=opik&utm_medium=github&utm_content=eval_link&utm_campaign=opik))
* **LLM as a judge metrics**: Use Opik's LLM as a judge metric for complex issues like [hallucination detection](https://www.comet.com/docs/opik/evaluation/metrics/hallucination/?from=llm&utm_source=opik&utm_medium=github&utm_content=hallucination_link&utm_campaign=opik), [moderation](https://www.comet.com/docs/opik/evaluation/metrics/moderation/?from=llm&utm_source=opik&utm_medium=github&utm_content=moderation_link&utm_campaign=opik) and RAG evaluation ([Answer Relevance](https://www.comet.com/docs/opik/evaluation/metrics/answer_relevance/?from=llm&utm_source=opik&utm_medium=github&utm_content=alex_link&utm_campaign=opik), [Context Precision](https://www.comet.com/docs/opik/evaluation/metrics/context_precision/?from=llm&utm_source=opik&utm_medium=github&utm_content=context_link&utm_campaign=opik)
* **CI/CD integration**: Run evaluations as part of your CI/CD pipeline using our [PyTest integration](https://www.comet.com/docs/opik/testing/pytest_integration/?from=llm&utm_source=opik&utm_medium=github&utm_content=pytest_link&utm_campaign=opik)
* **Production Monitoring**:
* **Log all your production traces**: Opik has been designed to support high volumes of traces, making it easy to monitor your production applications.
* **Monitoring dashboards**: Review your feedback scores, trace count and tokens over time in the [Opik Dashboard](https://www.comet.com/docs/opik/self-host/opik_dashboard/?from=llm&utm_source=opik&utm_medium=github&utm_content=dashboard_link&utm_campaign=opik)
> [!TIP]
> If you are looking for features that Opik doesn't have today, please raise a new [Github discussion topic](https://github.com/comet-ml/opik/discussions/categories/ideas) 🚀
<br>
## 🛠️ Installation
Opik is available as a fully open source local installation or using Comet.com as a hosted solution.
The easiest way to get started with Opik is by creating a free Comet account at [comet.com](https://www.comet.com/signup?from=llm&utm_source=opik&utm_medium=github&utm_content=install&utm_campaign=opik).
If you'd like to self-host Opik, you can do so by cloning the repository and starting the platform using Docker Compose:
```bash
# Clone the Opik repository
git clone https://github.com/comet-ml/opik.git
# Navigate to the opik/deployment/docker-compose directory
cd opik/deployment/docker-compose
# Start the Opik platform
docker compose up --detach
# You can now visit http://localhost:5173 on your browser!
```
For more information about the different deployment options, please see our deployment guides:
| Installation methods | Docs link |
| ------------------- | --------- |
| Local instance | [![Local Deployment](https://img.shields.io/badge/Local%20Deployments-%232496ED?style=flat&logo=docker&logoColor=white)](https://www.comet.com/docs/opik/self-host/local_deployment?from=llm&utm_source=opik&utm_medium=github&utm_content=self_host_link&utm_campaign=opik)
| Kubernetes | [![Kubernetes](https://img.shields.io/badge/Kubernetes-%23326ce5.svg?&logo=kubernetes&logoColor=white)](https://www.comet.com/docs/opik/self-host/kubernetes/#kubernetes-installation?from=llm&utm_source=opik&utm_medium=github&utm_content=kubernetes_link&utm_campaign=opik)
## 🏁 Get Started
To get started, you will need to first install the Python SDK:
```bash
pip install opik
```
Once the SDK is installed, you can configure it by running the `opik configure` command:
```bash
opik configure
```
This will allow you to configure Opik locally by setting the correct local server address or if you're using the Cloud platform by setting the API Key
> [!TIP]
> You can also call the `opik.configure(use_local=True)` method from your Python code to configure the SDK to run on the local installation.
You are now ready to start logging traces using the [Python SDK](https://www.comet.com/docs/opik/python-sdk-reference/?from=llm&utm_source=opik&utm_medium=github&utm_content=sdk_link2&utm_campaign=opik).
### 📝 Logging Traces
The easiest way to get started is to use one of our integrations. Opik supports:
| Integration | Description | Documentation | Try in Colab |
| ----------- | ---------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| OpenAI | Log traces for all OpenAI LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/openai/?utm_source=opik&utm_medium=github&utm_content=openai_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/openai.ipynb) |
| LiteLLM | Call any LLM model using the OpenAI format | [Documentation](/tracing/integrations/litellm.md) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/litellm.ipynb) |
| LangChain | Log traces for all LangChain LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langchain/?utm_source=opik&utm_medium=github&utm_content=langchain_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langchain.ipynb) |
| Bedrock | Log traces for all Bedrock LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/bedrock?utm_source=opik&utm_medium=github&utm_content=bedrock_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/bedrock.ipynb) |
| Anthropic | Log traces for all Anthropic LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/anthropic?utm_source=opik&utm_medium=github&utm_content=anthropic_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/anthropic.ipynb) |
| Gemini | Log traces for all Gemini LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/gemini?utm_source=opik&utm_medium=github&utm_content=gemini_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/gemini.ipynb) |
| Groq | Log traces for all Groq LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/groq?utm_source=opik&utm_medium=github&utm_content=groq_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/groq.ipynb) |
| LangGraph | Log traces for all LangGraph executions | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/langgraph/?utm_source=opik&utm_medium=github&utm_content=langchain_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/langgraph.ipynb) |
| LlamaIndex | Log traces for all LlamaIndex LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/llama_index?utm_source=opik&utm_medium=github&utm_content=llama_index_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/llama-index.ipynb) |
| Ollama | Log traces for all Ollama LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/ollama?utm_source=opik&utm_medium=github&utm_content=ollama_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/ollama.ipynb) |
| Predibase | Fine-tune and serve open-source Large Language Models | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/predibase?utm_source=opik&utm_medium=github&utm_content=predibase_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/predibase.ipynb) |
| Ragas | Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/ragas?utm_source=opik&utm_medium=github&utm_content=ragas_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/ragas.ipynb) |
| watsonx | Log traces for all watsonx LLM calls | [Documentation](https://www.comet.com/docs/opik/tracing/integrations/watsonx?utm_source=opik&utm_medium=github&utm_content=watsonx_link&utm_campaign=opik) | [![Open Quickstart In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/comet-ml/opik/blob/master/apps/opik-documentation/documentation/docs/cookbook/watsonx.ipynb) |
> [!TIP]
> If the framework you are using is not listed above, feel free to [open an issue](https://github.com/comet-ml/opik/issues) or submit a PR with the integration.
If you are not using any of the frameworks above, you can also use the `track` function decorator to [log traces](https://www.comet.com/docs/opik/tracing/log_traces/?from=llm&utm_source=opik&utm_medium=github&utm_content=traces_link&utm_campaign=opik):
```python
import opik
opik.configure(use_local=True) # Run locally
@opik.track
def my_llm_function(user_question: str) -> str:
# Your LLM code here
return "Hello"
```
> [!TIP]
> The track decorator can be used in conjunction with any of our integrations and can also be used to track nested function calls.
### 🧑⚖️ LLM as a Judge metrics
The Python Opik SDK includes a number of LLM as a judge metrics to help you evaluate your LLM application. Learn more about it in the [metrics documentation](https://www.comet.com/docs/opik/evaluation/metrics/overview/?from=llm&utm_source=opik&utm_medium=github&utm_content=metrics_2_link&utm_campaign=opik).
To use them, simply import the relevant metric and use the `score` function:
```python
from opik.evaluation.metrics import Hallucination
metric = Hallucination()
score = metric.score(
input="What is the capital of France?",
output="Paris",
context=["France is a country in Europe."]
)
print(score)
```
Opik also includes a number of pre-built heuristic metrics as well as the ability to create your own. Learn more about it in the [metrics documentation](https://www.comet.com/docs/opik/evaluation/metrics/overview?from=llm&utm_source=opik&utm_medium=github&utm_content=metrics_3_link&utm_campaign=opik).
### 🔍 Evaluating your LLM Application
Opik allows you to evaluate your LLM application during development through [Datasets](https://www.comet.com/docs/opik/evaluation/manage_datasets/?from=llm&utm_source=opik&utm_medium=github&utm_content=datasets_2_link&utm_campaign=opik) and [Experiments](https://www.comet.com/docs/opik/evaluation/evaluate_your_llm/?from=llm&utm_source=opik&utm_medium=github&utm_content=experiments_link&utm_campaign=opik).
You can also run evaluations as part of your CI/CD pipeline using our [PyTest integration](https://www.comet.com/docs/opik/testing/pytest_integration/?from=llm&utm_source=opik&utm_medium=github&utm_content=pytest_2_link&utm_campaign=opik).
## 🤝 Contributing
There are many ways to contribute to Opik:
* Submit [bug reports](https://github.com/comet-ml/opik/issues) and [feature requests](https://github.com/comet-ml/opik/issues)
* Review the documentation and submit [Pull Requests](https://github.com/comet-ml/opik/pulls) to improve it
* Speaking or writing about Opik and [letting us know](https://chat.comet.com)
* Upvoting [popular feature requests](https://github.com/comet-ml/opik/issues?q=is%3Aissue+is%3Aopen+label%3A%22enhancement%22) to show your support
To learn more about how to contribute to Opik, please see our [contributing guidelines](CONTRIBUTING.md).
", Assign "at most 3 tags" to the expected json: {"id":"11779","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"