AI prompts
base on A toolkit to create optimal Production-readyRetrieval Augmented Generation(RAG) setup for your data 

#
[](https://www.python.org/)
[](https://github.com/KruxAI/ragbuilder/releases/)
[](https://github.com/KruxAI/ragbuilder/blob/master/LICENSE)
[](https://github.com/KruxAI/ragbuilder/commit/)

RagBuilder is a toolkit that helps you create optimal Production-ready Retrieval-Augmented-Generation (RAG) setup for your data automatically. By performing hyperparameter tuning on various RAG parameters (Eg: chunking strategy: semantic, character etc., chunk size: 1000, 2000 etc.), RagBuilder evaluates these configurations against a test dataset to identify the best-performing setup for your data. Additionally, RagBuilder includes several state-of-the-art, pre-defined RAG templates that have shown strong performance across diverse datasets. So just bring your data, and RagBuilder will generate a production-grade RAG setup in just minutes.
## Features
- **Hyperparameter Tuning**: Efficiently optimize your RAG configurations using Bayesian optimization
- **Pre-defined RAG Templates**: Use state-of-the-art templates that have demonstrated strong performance Eg: Graph retriever, Contextual chunker etc.)
- **Evaluation Dataset Options**: Generate synthetic test dataset or provide your own
- **Component Access**: Direct access to vectorstore, retriever, and generator components
- **API Deployment**: Easily deploy as an API service
- **Project Persistence**: Save and load optimized RAG pipelines
## Installation
```bash
# Create a new venv
uv venv ragbuilder
# Activate the new venv
source ragbuilder/bin/activate
# Install
uv pip install ragbuilder
```
See other installation options here ([link](https://docs.ragbuilder.io/quickstart/#installation))
## Quick Start
```python
from ragbuilder import RAGBuilder
# Initialize and optimize with defaults
builder = RAGBuilder.from_source_with_defaults(input_source='https://lilianweng.github.io/posts/2023-06-23-agent/')
results = builder.optimize()
# Run a query through the complete pipeline
response = results.invoke("What is HNSW?")
# View optimization summary
print(results.summary())
```
### Setting Default Models
You can specify default LLM and embedding models that will be used throughout the pipeline:
`````python
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
# Initialize with custom defaults
builder = RAGBuilder.from_source_with_defaults(
input_source='data.pdf',
default_llm=AzureChatOpenAI(model="gpt-4o", temperature=0.0),
default_embeddings=AzureOpenAIEmbeddings(model="text-embedding-3-large"),
n_trials=20 # Set number of optimization trials
)
# Or when creating a RAGBuilder instance with fine grained custom configuration
builder = RAGBuilder(
data_ingest_config=data_ingest_config, # Custom Data Ingestion parameters
default_llm=AzureChatOpenAI(model="gpt-4o", temperature=0.0),
default_embeddings=AzureOpenAIEmbeddings(model="text-embedding-3-large")
)
`````
## Configuration Guide
### Basic Configuration
For most use cases, the default configuration provides good results:
```python
builder = RAGBuilder.from_source_with_defaults(
input_source='path/to/your/data',
test_dataset='path/to/test/data' # Optional
)
```
## Advanced Configuration
For fine-grained control over your RAG pipeline, you can customize every aspect:
````python
from ragbuilder.config import (
DataIngestOptionsConfig,
RetrievalOptionsConfig,
GenerationOptionsConfig
)
# Configure data ingestion
data_ingest_config = DataIngestOptionsConfig(
input_source="data.pdf",
document_loaders=[
{"type": "pymupdf"},
{"type": "unstructured"}
],
chunking_strategies=[{
"type": "RecursiveCharacterTextSplitter",
"chunker_kwargs": {"separators": ["\n\n", "\n", " ", ""]}
}],
chunk_size={"min": 500, "max": 2000, "stepsize": 500},
embedding_models=[{
"type": "openai",
"model_kwargs": {"model": "text-embedding-3-large"}
}]
)
# Initialize with custom configs
builder = RAGBuilder(
data_ingest_config=data_ingest_config,
default_llm=AzureChatOpenAI(model="gpt-4o", temperature=0.0),
default_embeddings=AzureOpenAIEmbeddings(model="text-embedding-3-large")
)
# Run individual module level optimization
builder.optimize_data_ingest()
# Configure retrieval options
retrieval_config = RetrievalOptionsConfig(
retrievers=[
{
"type": "vector_similarity",
"retriever_k": [20],
"weight": 0.5
},
{
"type": "bm25",
"retriever_k": [20],
"weight": 0.5
}
],
rerankers=[{
"type": "BAAI/bge-reranker-base"
}],
top_k=[3, 5]
)
# Run retrieval optimization with custom config
builder.optimize_retrieval(retrieval_config)
# Configure Generation related options
gen_config = GenerationOptionsConfig(
llms = [
LLMConfig(type="azure_openai", model_kwargs={'model':'gpt-4o-mini', 'temperature':0.2}),
LLMConfig(type="azure_openai", model_kwargs={'model':'gpt-4o', 'temperature':0.2}),
],
optimization={
"n_trials": 10,
"n_jobs": 1,
"study_name": "lillog_agents_study",
"optimization_direction": "maximize"
},
evaluation_config={"type": "ragas"},
)
# Run generation optimization with custom config
builder.optimize_generation(gen_config)
results = builder.optimization_results
response = adv_results.invoke("What is HNSW?")
````
## Component Options Reference
### Document Loaders
- `unstructured`: General-purpose loader
- `pymupdf`: Optimized for PDFs
- `pypdf`: Alternative PDF loader
- `web`: Web page loader
- Custom loaders via `custom_class`
### Chunking Strategies
- `RecursiveCharacterTextSplitter`: Recursive character text splitter
- `CharacterTextSplitter`: Character text splitter
- `MarkdownHeaderTextSplitter`: Markdown-header based splitter
- `HTMLHeaderTextSplitter`: HTML-header based splitter
- `SemanticChunker`: Semantic chunker
- `TokenTextSplitter`: Token-based splitter
- Custom splitters via `custom_class`
### Retrievers
- `vector_similarity`: Vector similarity search
- `vector_mmr`: Vector MMR search
- `bm25`: Keyword-based search using BM25
- `multi_query`: Multi-query retrievers
- `parent_doc_full`: Parent document full-doc retrieval
- `parent_doc_large`: Parent document large-chunks retrieval
- `graph`: Graph-based retrieval (requires Neo4j)
- Custom retrievers via `custom_class`
### Rerankers
- `BAAI/bge-reranker-base`: BGE base reranker
- `mixedbread-ai/mxbai-rerank-base-v1`: mxbai reranker base v1
- `mixedbread-ai/mxbai-rerank-large-v1`: mxbai reranker large v1
- `cohere`: Cohere's reranking model
- `jina`: Jina reranker
- `flashrank`: Flaskrank reranker
- `rankllm`: RankLLM reranker
- `colbert`: Colbert reranker
- Custom rerankers via `custom_class`
## Environment Variables
Create a `.env` file in your project directory:
````env
# Required
OPENAI_API_KEY=your_key_here
# Optional - For additional features
MISTRAL_API_KEY=your_key_here
COHERE_API_KEY=your_key_here
AZURE_OPENAI_API_KEY=your_key_here
AZURE_OPENAI_ENDPOINT=your_endpoint_here
# For Graph-based RAG
NEO4J_URI=bolt://localhost:7687
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD=your_password
````
## Advanced Topics
### Custom Evaluation Metrics
```python
from ragbuilder import EvaluationConfig
config = EvaluationConfig(
type="custom",
custom_class="your_module.CustomEvaluator",
evaluator_kwargs={
"metrics": ["precision", "recall", "f1_score"]
}
)
```
### Optimization Configuration
Fine-tune the optimization parameters:
```python
from ragbuilder import OptimizationConfig
config = OptimizationConfig(
n_trials=20,
n_jobs=1,
study_name="my_optimization",
optimization_direction="maximize"
)
```
## API Deployment
RAGBuilder can be deployed as an API service:
````python
# Initialize and optimize
builder = RAGBuilder.from_source_with_defaults('data.pdf')
results = builder.optimize()
# Deploy as API
builder.serve(host="0.0.0.0", port=8000)
````
Access via:
- `POST /query` - Run queries through the RAG pipeline
## Project Management
Save and load optimized RAG pipelines:
````python
# Save project
builder.save('rag_project/')
# Load existing project
builder = RAGBuilder.load('rag_project/')
# Access components
vectorstore = builder.data_ingest.get_vectorstore()
retriever = builder.retrieval.get_retriever()
generator = builder.generation.get_generator()
````
## Best Practices
1. **Start Simple**
- Begin with `from_source_with_defaults()`
- Add complexity only when needed
2. **Test Data Quality**
- Provide representative test queries
- Use domain-specific evaluation metrics
3. **Resource Management**
- Monitor memory usage with large datasets
- Use chunking for large documents
4. **Production Deployment**
- Save optimized projects for reuse
- Monitor API performance metrics
- Implement rate limiting for API endpoints
## Usage Analytics
We collect anonymous usage metrics to improve RAGBuilder:
- Number of optimization runs
- Success/failure rates
- No personal or business data is collected
To opt-out set `ENABLE_ANALYTICS=False` in `.env`:
## Contributing
We welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md) for guidelines.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
", Assign "at most 3 tags" to the expected json: {"id":"11926","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"