base on D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement ๐ฅ๐ฅ๐ฅ <!--# [D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement](https://arxiv.org/abs/xxxxxx) -->
English | [็ฎไฝไธญๆ](README_cn.md) | [ๆฅๆฌ่ช](README_ja.md) | [English Blog](src/zoo/dfine/blog.md) | [ไธญๆๅๅฎข](src/zoo/dfine/blog_cn.md)
<h2 align="center">
D-FINE: Redefine Regression Task of DETRs as Fine‑grained Distribution Refinement
</h2>
<p align="center">
<a href="https://github.com/Peterande/D-FINE/blob/master/LICENSE">
<img alt="license" src="https://img.shields.io/badge/LICENSE-Apache%202.0-blue">
</a>
<a href="https://github.com/Peterande/D-FINE/pulls">
<img alt="prs" src="https://img.shields.io/github/issues-pr/Peterande/D-FINE">
</a>
<a href="https://github.com/Peterande/D-FINE/issues">
<img alt="issues" src="https://img.shields.io/github/issues/Peterande/D-FINE?color=olive">
</a>
<a href="https://arxiv.org/abs/2410.13842">
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-2410.13842-red">
</a>
<!-- <a href="mailto:
[email protected]">
<img alt="email" src="https://img.shields.io/badge/contact_me-email-yellow">
</a> -->
<a href="https://results.pre-commit.ci/latest/github/Peterande/D-FINE/master">
<img alt="pre-commit.ci status" src="https://results.pre-commit.ci/badge/github/Peterande/D-FINE/master.svg">
</a>
<a href="https://github.com/Peterande/D-FINE">
<img alt="stars" src="https://img.shields.io/github/stars/Peterande/D-FINE">
</a>
</p>
<p align="center">
๐ This is the official implementation of the paper:
<br>
<a href="https://arxiv.org/abs/2410.13842">D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement</a>
</p>
<p align="center">
Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu
</p>
<p align="center">
University of Science and Technology of China
</p>
<p align="center">
<a href="https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=d-fine-redefine-regression-task-in-detrs-as">
<img alt="sota" src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/d-fine-redefine-regression-task-in-detrs-as/real-time-object-detection-on-coco">
</a>
</p>
<!-- <table><tr>
<td><img src=https://github.com/Peterande/storage/blob/master/latency.png border=0 width=333></td>
<td><img src=https://github.com/Peterande/storage/blob/master/params.png border=0 width=333></td>
<td><img src=https://github.com/Peterande/storage/blob/master/flops.png border=0 width=333></td>
</tr></table> -->
<p align="center">
<strong>If you like D-FINE, please give us a โญ! Your support motivates us to keep improving!</strong>
</p>
<p align="center">
<img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/stats_padded.png" width="1000">
</p>
D-FINE is a powerful real-time object detector that redefines the bounding box regression task in DETRs as Fine-grained Distribution Refinement (FDR) and introduces Global Optimal Localization Self-Distillation (GO-LSD), achieving outstanding performance without introducing additional inference and training costs.
<details open>
<summary> Video </summary>
We conduct object detection using D-FINE and YOLO11 on a complex street scene video from [YouTube](https://www.youtube.com/watch?v=CfhEWj9sd9A). Despite challenging conditions such as backlighting, motion blur, and dense crowds, D-FINE-X successfully detects nearly all targets, including subtle small objects like backpacks, bicycles, and traffic lights. Its confidence scores and the localization precision for blurred edges are significantly higher than those of YOLO11.
<!-- We use D-FINE and YOLO11 on a street scene video from [YouTube](https://www.youtube.com/watch?v=CfhEWj9sd9A). Despite challenges like backlighting, motion blur, and dense crowds, D-FINE-X outperforms YOLO11x, detecting more objects with higher confidence and better precision. -->
https://github.com/user-attachments/assets/e5933d8e-3c8a-400e-870b-4e452f5321d9
</details>
## ๐ Updates
- [x] **\[2024.10.18\]** Release D-FINE series.
- [x] **\[2024.10.25\]** Add custom dataset finetuning configs ([#7](https://github.com/Peterande/D-FINE/issues/7)).
- [x] **\[2024.10.30\]** Update D-FINE-L (E25) pretrained model, with performance improved by 2.0%.
- [x] **\[2024.11.07\]** Release **D-FINE-N**, achiving 42.8% AP<sup>val</sup> on COCO @ 472 FPS<sup>T4</sup>!
## Model Zoo
### COCO
| Model | Dataset | AP<sup>val</sup> | #Params | Latency | GFLOPs | config | checkpoint | logs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
**D‑FINE‑N** | COCO | **42.8** | 4M | 2.12ms | 7 | [yml](./configs/dfine/dfine_hgnetv2_n_coco.yml) | [42.8](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_n_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_n_coco_log.txt)
**D‑FINE‑S** | COCO | **48.5** | 10M | 3.49ms | 25 | [yml](./configs/dfine/dfine_hgnetv2_s_coco.yml) | [48.5](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_s_coco_log.txt)
**D‑FINE‑M** | COCO | **52.3** | 19M | 5.62ms | 57 | [yml](./configs/dfine/dfine_hgnetv2_m_coco.yml) | [52.3](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_m_coco_log.txt)
**D‑FINE‑L** | COCO | **54.0** | 31M | 8.07ms | 91 | [yml](./configs/dfine/dfine_hgnetv2_l_coco.yml) | [54.0](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_l_coco_log.txt)
**D‑FINE‑X** | COCO | **55.8** | 62M | 12.89ms | 202 | [yml](./configs/dfine/dfine_hgnetv2_x_coco.yml) | [55.8](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_x_coco_log.txt)
### Objects365+COCO
| Model | Dataset | AP<sup>val</sup> | #Params | Latency | GFLOPs | config | checkpoint | logs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
**D‑FINE‑S** | Objects365+COCO | **50.7** | 10M | 3.49ms | 25 | [yml](./configs/dfine/objects365/dfine_hgnetv2_s_obj2coco.yml) | [50.7](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj2coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_s_obj2coco_log.txt)
**D‑FINE‑M** | Objects365+COCO | **55.1** | 19M | 5.62ms | 57 | [yml](./configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml) | [55.1](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj2coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_m_obj2coco_log.txt)
**D‑FINE‑L** | Objects365+COCO | **57.3** | 31M | 8.07ms | 91 | [yml](./configs/dfine/objects365/dfine_hgnetv2_l_obj2coco.yml) | [57.3](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj2coco_e25.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_l_obj2coco_log_e25.txt)
**D‑FINE‑X** | Objects365+COCO | **59.3** | 62M | 12.89ms | 202 | [yml](./configs/dfine/objects365/dfine_hgnetv2_x_obj2coco.yml) | [59.3](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj2coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_x_obj2coco_log.txt)
**We highly recommend that you use the Objects365 pre-trained model for fine-tuning:**
โ ๏ธ **Important**: Please note that this is generally beneficial for complex scene understanding. If your categories are very simple, it might lead to overfitting and suboptimal performance.
<details>
<summary><strong> ๐ฅ Pretrained Models on Objects365 (Best generalization) </strong></summary>
| Model | Dataset | AP<sup>val</sup> | AP<sup>5000</sup> | #Params | Latency | GFLOPs | config | checkpoint | logs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
**D‑FINE‑S** | Objects365 | **31.0** | **30.5** | 10M | 3.49ms | 25 | [yml](./configs/dfine/objects365/dfine_hgnetv2_s_obj365.yml) | [30.5](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_s_obj365_log.txt)
**D‑FINE‑M** | Objects365 | **38.6** | **37.4** | 19M | 5.62ms | 57 | [yml](./configs/dfine/objects365/dfine_hgnetv2_m_obj365.yml) | [37.4](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_m_obj365_log.txt)
**D‑FINE‑L** | Objects365 | - | **40.6** | 31M | 8.07ms | 91 | [yml](./configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml) | [40.6](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_l_obj365_log.txt)
**D‑FINE‑L (E25)** | Objects365 | **44.7** | **42.6** | 31M | 8.07ms | 91 | [yml](./configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml) | [42.6](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365_e25.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_l_obj365_log_e25.txt)
**D‑FINE‑X** | Objects365 | **49.5** | **46.5** | 62M | 12.89ms | 202 | [yml](./configs/dfine/objects365/dfine_hgnetv2_x_obj365.yml) | [46.5](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_x_obj365_log.txt)
- **E25**: Re-trained and extended the pretraining to 25 epochs.
- **AP<sup>val</sup>** is evaluated on *Objects365* full validation set.
- **AP<sup>5000</sup>** is evaluated on the first 5000 samples of the *Objects365* validation set.
</details>
**Notes:**
- **AP<sup>val</sup>** is evaluated on *MSCOCO val2017* dataset.
- **Latency** is evaluated on a single T4 GPU with $batch\\_size = 1$, $fp16$, and $TensorRT==10.4.0$.
- **Objects365+COCO** means finetuned model on *COCO* using pretrained weights trained on *Objects365*.
## Quick start
### Setup
```shell
conda create -n dfine python=3.11.9
conda activate dfine
pip install -r requirements.txt
```
### Data Preparation
<details>
<summary> COCO2017 Dataset </summary>
1. Download COCO2017 from [OpenDataLab](https://opendatalab.com/OpenDataLab/COCO_2017) or [COCO](https://cocodataset.org/#download).
1. Modify paths in [coco_detection.yml](./configs/dataset/coco_detection.yml)
```yaml
train_dataloader:
img_folder: /data/COCO2017/train2017/
ann_file: /data/COCO2017/annotations/instances_train2017.json
val_dataloader:
img_folder: /data/COCO2017/val2017/
ann_file: /data/COCO2017/annotations/instances_val2017.json
```
</details>
<details>
<summary> Objects365 Dataset </summary>
1. Download Objects365 from [OpenDataLab](https://opendatalab.com/OpenDataLab/Objects365).
2. Set the Base Directory:
```shell
export BASE_DIR=/data/Objects365/data
```
3. Extract and organize the downloaded files, resulting directory structure:
```shell
${BASE_DIR}/train
โโโ images
โ โโโ v1
โ โ โโโ patch0
โ โ โ โโโ 000000000.jpg
โ โ โ โโโ 000000001.jpg
โ โ โ โโโ ... (more images)
โ โโโ v2
โ โ โโโ patchx
โ โ โ โโโ 000000000.jpg
โ โ โ โโโ 000000001.jpg
โ โ โ โโโ ... (more images)
โโโ zhiyuan_objv2_train.json
```
```shell
${BASE_DIR}/val
โโโ images
โ โโโ v1
โ โ โโโ patch0
โ โ โ โโโ 000000000.jpg
โ โ โ โโโ ... (more images)
โ โโโ v2
โ โ โโโ patchx
โ โ โ โโโ 000000000.jpg
โ โ โ โโโ ... (more images)
โโโ zhiyuan_objv2_val.json
```
4. Create a New Directory to Store Images from the Validation Set:
```shell
mkdir -p ${BASE_DIR}/train/images_from_val
```
5. Copy the v1 and v2 folders from the val directory into the train/images_from_val directory
```shell
cp -r ${BASE_DIR}/val/images/v1 ${BASE_DIR}/train/images_from_val/
cp -r ${BASE_DIR}/val/images/v2 ${BASE_DIR}/train/images_from_val/
```
6. Run remap_obj365.py to merge a subset of the validation set into the training set. Specifically, this script moves samples with indices between 5000 and 800000 from the validation set to the training set.
```shell
python tools/remap_obj365.py --base_dir ${BASE_DIR}
```
7. Run the resize_obj365.py script to resize any images in the dataset where the maximum edge length exceeds 640 pixels. Use the updated JSON file generated in Step 5 to process the sample data. Ensure that you resize images in both the train and val datasets to maintain consistency.
```shell
python tools/resize_obj365.py --base_dir ${BASE_DIR}
```
8. Modify paths in [obj365_detection.yml](./configs/dataset/obj365_detection.yml)
```yaml
train_dataloader:
img_folder: /data/Objects365/data/train
ann_file: /data/Objects365/data/train/new_zhiyuan_objv2_train_resized.json
val_dataloader:
img_folder: /data/Objects365/data/val/
ann_file: /data/Objects365/data/val/new_zhiyuan_objv2_val_resized.json
```
</details>
<details>
<summary>CrowdHuman</summary>
Download COCO format dataset here: [url](https://aistudio.baidu.com/datasetdetail/231455)
</details>
<details>
<summary>Custom Dataset</summary>
To train on your custom dataset, you need to organize it in the COCO format. Follow the steps below to prepare your dataset:
1. **Set `remap_mscoco_category` to `False`:**
This prevents the automatic remapping of category IDs to match the MSCOCO categories.
```yaml
remap_mscoco_category: False
```
2. **Organize Images:**
Structure your dataset directories as follows:
```shell
dataset/
โโโ images/
โ โโโ train/
โ โ โโโ image1.jpg
โ โ โโโ image2.jpg
โ โ โโโ ...
โ โโโ val/
โ โ โโโ image1.jpg
โ โ โโโ image2.jpg
โ โ โโโ ...
โโโ annotations/
โโโ instances_train.json
โโโ instances_val.json
โโโ ...
```
- **`images/train/`**: Contains all training images.
- **`images/val/`**: Contains all validation images.
- **`annotations/`**: Contains COCO-formatted annotation files.
3. **Convert Annotations to COCO Format:**
If your annotations are not already in COCO format, you'll need to convert them. You can use the following Python script as a reference or utilize existing tools:
```python
import json
def convert_to_coco(input_annotations, output_annotations):
# Implement conversion logic here
pass
if __name__ == "__main__":
convert_to_coco('path/to/your_annotations.json', 'dataset/annotations/instances_train.json')
```
4. **Update Configuration Files:**
Modify your [custom_detection.yml](./configs/dataset/custom_detection.yml).
```yaml
task: detection
evaluator:
type: CocoEvaluator
iou_types: ['bbox', ]
num_classes: 777 # your dataset classes
remap_mscoco_category: False
train_dataloader:
type: DataLoader
dataset:
type: CocoDetection
img_folder: /data/yourdataset/train
ann_file: /data/yourdataset/train/train.json
return_masks: False
transforms:
type: Compose
ops: ~
shuffle: True
num_workers: 4
drop_last: True
collate_fn:
type: BatchImageCollateFunction
val_dataloader:
type: DataLoader
dataset:
type: CocoDetection
img_folder: /data/yourdataset/val
ann_file: /data/yourdataset/val/ann.json
return_masks: False
transforms:
type: Compose
ops: ~
shuffle: False
num_workers: 4
drop_last: False
collate_fn:
type: BatchImageCollateFunction
```
</details>
## Usage
<details open>
<summary> COCO2017 </summary>
<!-- <summary>1. Training </summary> -->
1. Set Model
```shell
export model=l # n s m l x
```
2. Training
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0
```
<!-- <summary>2. Testing </summary> -->
3. Testing
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
```
<!-- <summary>3. Tuning </summary> -->
4. Tuning
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0 -t model.pth
```
</details>
<details>
<summary> Objects365 to COCO2017 </summary>
1. Set Model
```shell
export model=l # n s m l x
```
2. Training on Objects365
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj365.yml --use-amp --seed=0
```
3. Tuning on COCO2017
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj2coco.yml --use-amp --seed=0 -t model.pth
```
<!-- <summary>2. Testing </summary> -->
4. Testing
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
```
</details>
<details>
<summary> Custom Dataset </summary>
1. Set Model
```shell
export model=l # n s m l x
```
2. Training on Custom Dataset
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0
```
<!-- <summary>2. Testing </summary> -->
3. Testing
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --test-only -r model.pth
```
4. Tuning on Custom Dataset
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/objects365/dfine_hgnetv2_${model}_obj2custom.yml --use-amp --seed=0 -t model.pth
```
5. **[Optional]** Modify Class Mappings:
When using the Objects365 pre-trained weights to train on your custom dataset, the example assumes that your dataset only contains the classes `'Person'` and `'Car'`. For faster convergence, you can modify `self.obj365_ids` in `src/solver/_solver.py` as follows:
```python
self.obj365_ids = [0, 5] # Person, Cars
```
You can replace these with any corresponding classes from your dataset. The list of Objects365 classes with their corresponding IDs:
https://github.com/Peterande/D-FINE/blob/352a94ece291e26e1957df81277bef00fe88a8e3/src/solver/_solver.py#L330
New training command:
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0 -t model.pth
```
However, if you don't wish to modify the class mappings, the pre-trained Objects365 weights will still work without any changes. Modifying the class mappings is optional and can potentially accelerate convergence for specific tasks.
</details>
<details>
<summary> Customizing Batch Size </summary>
For example, if you want to double the total batch size when training D-FINE-L on COCO2017, here are the steps you should follow:
1. **Modify your [dataloader.yml](./configs/dfine/include/dataloader.yml)** to increase the `total_batch_size`:
```yaml
train_dataloader:
total_batch_size: 64 # Previously it was 32, now doubled
```
2. **Modify your [dfine_hgnetv2_l_coco.yml](./configs/dfine/dfine_hgnetv2_l_coco.yml)**. Hereโs how the key parameters should be adjusted:
```yaml
optimizer:
type: AdamW
params:
-
params: '^(?=.*backbone)(?!.*norm|bn).*$'
lr: 0.000025 # doubled, linear scaling law
-
params: '^(?=.*(?:encoder|decoder))(?=.*(?:norm|bn)).*$'
weight_decay: 0.
lr: 0.0005 # doubled, linear scaling law
betas: [0.9, 0.999]
weight_decay: 0.0001 # need a grid search
ema: # added EMA settings
decay: 0.9998 # adjusted by 1 - (1 - decay) * 2
warmups: 500 # halved
lr_warmup_scheduler:
warmup_duration: 250 # halved
```
</details>
<details>
<summary> Customizing Input Size </summary>
If you'd like to train **D-FINE-L** on COCO2017 with an input size of 320x320, follow these steps:
1. **Modify your [dataloader.yml](./configs/dfine/include/dataloader.yml)**:
```yaml
train_dataloader:
dataset:
transforms:
ops:
- {type: Resize, size: [320, 320], }
collate_fn:
base_size: 320
dataset:
transforms:
ops:
- {type: Resize, size: [320, 320], }
```
2. **Modify your [dfine_hgnetv2.yml](./configs/dfine/include/dfine_hgnetv2.yml)**:
```yaml
eval_spatial_size: [320, 320]
```
</details>
## Tools
<details>
<summary> Deployment </summary>
<!-- <summary>4. Export onnx </summary> -->
1. Setup
```shell
pip install onnx onnxsim
export model=l # n s m l x
```
2. Export onnx
```shell
python tools/deployment/export_onnx.py --check -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
```
3. Export [tensorrt](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html)
```shell
trtexec --onnx="model.onnx" --saveEngine="model.engine" --fp16
```
</details>
<details>
<summary> Inference (Visualization) </summary>
1. Setup
```shell
pip install -r tools/inference/requirements.txt
export model=l # n s m l x
```
<!-- <summary>5. Inference </summary> -->
2. Inference (onnxruntime / tensorrt / torch)
Inference on images and videos is now supported.
```shell
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4
python tools/inference/trt_inf.py --trt model.engine --input image.jpg
python tools/inference/torch_inf.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth --input image.jpg --device cuda:0
```
</details>
<details>
<summary> Benchmark </summary>
1. Setup
```shell
pip install -r tools/benchmark/requirements.txt
export model=l # n s m l x
```
<!-- <summary>6. Benchmark </summary> -->
2. Model FLOPs, MACs, and Params
```shell
python tools/benchmark/get_info.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml
```
2. TensorRT Latency
```shell
python tools/benchmark/trt_benchmark.py --COCO_dir path/to/COCO2017 --engine_dir model.engine
```
</details>
<details>
<summary> Fiftyone Visualization </summary>
1. Setup
```shell
pip install fiftyone
export model=l # n s m l x
```
4. Voxel51 Fiftyone Visualization ([fiftyone](https://github.com/voxel51/fiftyone))
```shell
python tools/visualization/fiftyone_vis.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
```
</details>
<details>
<summary> Others </summary>
1. Auto Resume Training
```shell
bash reference/safe_training.sh
```
2. Converting Model Weights
```shell
python reference/convert_weight.py model.pth
```
</details>
## Figures and Visualizations
<details>
<summary> FDR and GO-LSD </summary>
1. Overview of D-FINE with FDR. The probability distributions that act as a more fine-
grained intermediate representation are iteratively refined by the decoder layers in a residual manner.
Non-uniform weighting functions are applied to allow for finer localization.
<p align="center">
<img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/fdr-1.jpg" alt="Fine-grained Distribution Refinement Process" width="1000">
</p>
2. Overview of GO-LSD process. Localization knowledge from the final layerโs refined
distributions is distilled into earlier layers through DDF loss with decoupled weighting strategies.
<p align="center">
<img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/go_lsd-1.jpg" alt="GO-LSD Process" width="1000">
</p>
</details>
<details open>
<summary> Distributions </summary>
Visualizations of FDR across detection scenarios with initial and refined bounding boxes, along with unweighted and weighted distributions.
<p align="center">
<img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/merged_image.jpg" width="1000">
</p>
</details>
<details>
<summary> Hard Cases </summary>
The following visualization demonstrates D-FINE's predictions in various complex detection scenarios. These include cases with occlusion, low-light conditions, motion blur, depth of field effects, and densely populated scenes. Despite these challenges, D-FINE consistently produces accurate localization results.
<p align="center">
<img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/hard_case-1.jpg" alt="D-FINE Predictions in Challenging Scenarios" width="1000">
</p>
</details>
<!-- <div style="display: flex; flex-wrap: wrap; justify-content: center; margin: 0; padding: 0;">
<img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/merged_image.jpg" style="width:99.96%; margin: 0; padding: 0;" />
</div>
<table><tr>
<td><img src=https://raw.githubusercontent.com/Peterande/storage/master/figs/merged_image.jpg border=0 width=1000></td>
</tr></table> -->
## Citation
If you use `D-FINE` or its methods in your work, please cite the following BibTeX entries:
<details open>
<summary> bibtex </summary>
```latex
@misc{peng2024dfine,
title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement},
author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu},
year={2024},
eprint={2410.13842},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
</details>
## Acknowledgement
Our work is built upon [RT-DETR](https://github.com/lyuwenyu/RT-DETR).
Thanks to the inspirations from [RT-DETR](https://github.com/lyuwenyu/RT-DETR), [GFocal](https://github.com/implus/GFocal), [LD](https://github.com/HikariTJU/LD), and [YOLOv9](https://github.com/WongKinYiu/yolov9).
โจ Feel free to contribute and reach out if you have any questions! โจ
", Assign "at most 3 tags" to the expected json: {"id":"12254","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"