AI prompts
base on š„¤ RAGLite is a Python toolkit for Retrieval-Augmented Generation (RAG) with PostgreSQL or SQLite [![Open in Dev Containers](https://img.shields.io/static/v1?label=Dev%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/superlinear-ai/raglite) [![Open in GitHub Codespaces](https://img.shields.io/static/v1?label=GitHub%20Codespaces&message=Open&color=blue&logo=github)](https://github.com/codespaces/new/superlinear-ai/raglite)
# š„¤ RAGLite
RAGLite is a Python toolkit for Retrieval-Augmented Generation (RAG) with PostgreSQL or SQLite.
## Features
##### Configurable
- š§ Choose any LLM provider with [LiteLLM](https://github.com/BerriAI/litellm), including local [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) models
- š¾ Choose either [PostgreSQL](https://github.com/postgres/postgres) or [SQLite](https://github.com/sqlite/sqlite) as a keyword & vector search database
- š„ Choose any reranker with [rerankers](https://github.com/AnswerDotAI/rerankers), including multilingual [FlashRank](https://github.com/PrithivirajDamodaran/FlashRank) as the default
##### Fast and permissive
- ā¤ļø Only lightweight and permissive open source dependencies (e.g., no [PyTorch](https://github.com/pytorch/pytorch) or [LangChain](https://github.com/langchain-ai/langchain))
- š Acceleration with Metal on macOS, and CUDA on Linux and Windows
##### Unhobbled
- š PDF to Markdown conversion on top of [pdftext](https://github.com/VikParuchuri/pdftext) and [pypdfium2](https://github.com/pypdfium2-team/pypdfium2)
- š§¬ Multi-vector chunk embedding with [late chunking](https://weaviate.io/blog/late-chunking) and [contextual chunk headings](https://d-star.ai/solving-the-out-of-context-chunk-problem-for-rag)
- āļø Optimal [level 4 semantic chunking](https://medium.com/@anuragmishra_27746/five-levels-of-chunking-strategies-in-rag-notes-from-gregs-video-7b735895694d) by solving a [binary integer programming problem](https://en.wikipedia.org/wiki/Integer_programming)
- š [Hybrid search](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf) with the database's native keyword & vector search ([tsvector](https://www.postgresql.org/docs/current/datatype-textsearch.html)+[pgvector](https://github.com/pgvector/pgvector), [FTS5](https://www.sqlite.org/fts5.html)+[sqlite-vec](https://github.com/asg017/sqlite-vec)[^1])
- š [Adaptive retrieval](https://arxiv.org/abs/2403.14403) where the LLM decides whether to and what to retrieve based on the query
- š° Improved cost and latency with a [prompt caching-aware message array structure](https://platform.openai.com/docs/guides/prompt-caching)
- š° Improved output quality with [Anthropic's long-context prompt format](https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/long-context-tips)
- š Optimal [closed-form linear query adapter](src/raglite/_query_adapter.py) by solving an [orthogonal Procrustes problem](https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem)
##### Extensible
- š A built-in [Model Context Protocol](https://modelcontextprotocol.io) (MCP) server that any MCP client like [Claude desktop](https://claude.ai/download) can connect with
- š¬ Optional customizable ChatGPT-like frontend for [web](https://docs.chainlit.io/deploy/copilot), [Slack](https://docs.chainlit.io/deploy/slack), and [Teams](https://docs.chainlit.io/deploy/teams) with [Chainlit](https://github.com/Chainlit/chainlit)
- āļø Optional conversion of any input document to Markdown with [Pandoc](https://github.com/jgm/pandoc)
- ā
Optional evaluation of retrieval and generation performance with [Ragas](https://github.com/explodinggradients/ragas)
[^1]: We use [PyNNDescent](https://github.com/lmcinnes/pynndescent) until [sqlite-vec](https://github.com/asg017/sqlite-vec) is more mature.
## Installing
First, begin by installing spaCy's multilingual sentence model:
```sh
# Install spaCy's xx_sent_ud_sm:
pip install https://github.com/explosion/spacy-models/releases/download/xx_sent_ud_sm-3.7.0/xx_sent_ud_sm-3.7.0-py3-none-any.whl
```
Next, it is optional but recommended to install [an accelerated llama-cpp-python precompiled binary](https://github.com/abetlen/llama-cpp-python?tab=readme-ov-file#supported-backends) with:
```sh
# Configure which llama-cpp-python precompiled binary to install (ā ļø On macOS only v0.3.2 is supported right now):
LLAMA_CPP_PYTHON_VERSION=0.3.2
PYTHON_VERSION=310
ACCELERATOR=metal|cu121|cu122|cu123|cu124
PLATFORM=macosx_11_0_arm64|linux_x86_64|win_amd64
# Install llama-cpp-python:
pip install "https://github.com/abetlen/llama-cpp-python/releases/download/v$LLAMA_CPP_PYTHON_VERSION-$ACCELERATOR/llama_cpp_python-$LLAMA_CPP_PYTHON_VERSION-cp$PYTHON_VERSION-cp$PYTHON_VERSION-$PLATFORM.whl"
```
Finally, install RAGLite with:
```sh
pip install raglite
```
To add support for a customizable ChatGPT-like frontend, use the `chainlit` extra:
```sh
pip install raglite[chainlit]
```
To add support for filetypes other than PDF, use the `pandoc` extra:
```sh
pip install raglite[pandoc]
```
To add support for evaluation, use the `ragas` extra:
```sh
pip install raglite[ragas]
```
## Using
### Overview
1. [Configuring RAGLite](#1-configuring-raglite)
2. [Inserting documents](#2-inserting-documents)
3. [Retrieval-Augmented Generation (RAG)](#3-retrieval-augmented-generation-rag)
4. [Computing and using an optimal query adapter](#4-computing-and-using-an-optimal-query-adapter)
5. [Evaluation of retrieval and generation](#5-evaluation-of-retrieval-and-generation)
6. [Running a Model Context Protocol (MCP) server](#6-running-a-model-context-protocol-mcp-server)
7. [Serving a customizable ChatGPT-like frontend](#7-serving-a-customizable-chatgpt-like-frontend)
### 1. Configuring RAGLite
> [!TIP]
> š§ RAGLite extends [LiteLLM](https://github.com/BerriAI/litellm) with support for [llama.cpp](https://github.com/ggerganov/llama.cpp) models using [llama-cpp-python](https://github.com/abetlen/llama-cpp-python). To select a llama.cpp model (e.g., from [bartowski's collection](https://huggingface.co/bartowski)), use a model identifier of the form `"llama-cpp-python/<hugging_face_repo_id>/<filename>@<n_ctx>"`, where `n_ctx` is an optional parameter that specifies the context size of the model.
> [!TIP]
> š¾ You can create a PostgreSQL database in a few clicks at [neon.tech](https://neon.tech).
First, configure RAGLite with your preferred PostgreSQL or SQLite database and [any LLM supported by LiteLLM](https://docs.litellm.ai/docs/providers/openai):
```python
from raglite import RAGLiteConfig
# Example 'remote' config with a PostgreSQL database and an OpenAI LLM:
my_config = RAGLiteConfig(
db_url="postgresql://my_username:my_password@my_host:5432/my_database"
llm="gpt-4o-mini", # Or any LLM supported by LiteLLM.
embedder="text-embedding-3-large", # Or any embedder supported by LiteLLM.
)
# Example 'local' config with a SQLite database and a llama.cpp LLM:
my_config = RAGLiteConfig(
db_url="sqlite:///raglite.db",
llm="llama-cpp-python/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/*Q4_K_M.gguf@8192",
embedder="llama-cpp-python/lm-kit/bge-m3-gguf/*F16.gguf@1024", # A context size of 1024 tokens is the sweet spot for bge-m3.
)
```
You can also configure [any reranker supported by rerankers](https://github.com/AnswerDotAI/rerankers):
```python
from rerankers import Reranker
# Example remote API-based reranker:
my_config = RAGLiteConfig(
db_url="postgresql://my_username:my_password@my_host:5432/my_database"
reranker=Reranker("cohere", lang="en", api_key=COHERE_API_KEY)
)
# Example local cross-encoder reranker per language (this is the default):
my_config = RAGLiteConfig(
db_url="sqlite:///raglite.db",
reranker=(
("en", Reranker("ms-marco-MiniLM-L-12-v2", model_type="flashrank")), # English
("other", Reranker("ms-marco-MultiBERT-L-12", model_type="flashrank")), # Other languages
)
)
```
### 2. Inserting documents
> [!TIP]
> āļø To insert documents other than PDF, install the `pandoc` extra with `pip install raglite[pandoc]`.
Next, insert some documents into the database. RAGLite will take care of the [conversion to Markdown](src/raglite/_markdown.py), [optimal level 4 semantic chunking](src/raglite/_split_chunks.py), and [multi-vector embedding with late chunking](src/raglite/_embed.py):
```python
# Insert documents:
from pathlib import Path
from raglite import insert_document
insert_document(Path("On the Measure of Intelligence.pdf"), config=my_config)
insert_document(Path("Special Relativity.pdf"), config=my_config)
```
### 3. Retrieval-Augmented Generation (RAG)
#### 3.1 Adaptive RAG
Now you can run an adaptive RAG pipeline that consists of adding the user prompt to the message history and streaming the LLM response:
```python
from raglite import rag
# Create a user message:
messages = [] # Or start with an existing message history.
messages.append({
"role": "user",
"content": "How is intelligence measured?"
})
# Adaptively decide whether to retrieve and then stream the response:
chunk_spans = []
stream = rag(messages, on_retrieval=lambda x: chunk_spans.extend(x), config=my_config)
for update in stream:
print(update, end="")
# Access the documents referenced in the RAG context:
documents = [chunk_span.document for chunk_span in chunk_spans]
```
The LLM will adaptively decide whether to retrieve information based on the complexity of the user prompt. If retrieval is necessary, the LLM generates the search query and RAGLite applies hybrid search and reranking to retrieve the most relevant chunk spans (each of which is a list of consecutive chunks). The retrieval results are sent to the `on_retrieval` callback and are appended to the message history as a tool output. Finally, the assistant response is streamed and appended to the message history.
#### 3.2 Programmable RAG
If you need manual control over the RAG pipeline, you can run a basic but powerful pipeline that consists of retrieving the most relevant chunk spans with hybrid search and reranking, converting the user prompt to a RAG instruction and appending it to the message history, and finally generating the RAG response:
```python
from raglite import create_rag_instruction, rag, retrieve_rag_context
# Retrieve relevant chunk spans with hybrid search and reranking:
user_prompt = "How is intelligence measured?"
chunk_spans = retrieve_rag_context(query=user_prompt, num_chunks=5, config=my_config)
# Append a RAG instruction based on the user prompt and context to the message history:
messages = [] # Or start with an existing message history.
messages.append(create_rag_instruction(user_prompt=user_prompt, context=chunk_spans))
# Stream the RAG response and append it to the message history:
stream = rag(messages, config=my_config)
for update in stream:
print(update, end="")
# Access the documents referenced in the RAG context:
documents = [chunk_span.document for chunk_span in chunk_spans]
```
> [!TIP]
> š„ Reranking can significantly improve the output quality of a RAG application. To add reranking to your application: first search for a larger set of 20 relevant chunks, then rerank them with a [rerankers](https://github.com/AnswerDotAI/rerankers) reranker, and finally keep the top 5 chunks.
RAGLite also offers more advanced control over the individual steps of a full RAG pipeline:
1. Searching for relevant chunks with keyword, vector, or hybrid search
2. Retrieving the chunks from the database
3. Reranking the chunks and selecting the top 5 results
4. Extending the chunks with their neighbors and grouping them into chunk spans
5. Converting the user prompt to a RAG instruction and appending it to the message history
6. Streaming an LLM response to the message history
7. Accessing the cited documents from the chunk spans
A full RAG pipeline is straightforward to implement with RAGLite:
```python
# Search for chunks:
from raglite import hybrid_search, keyword_search, vector_search
user_prompt = "How is intelligence measured?"
chunk_ids_vector, _ = vector_search(user_prompt, num_results=20, config=my_config)
chunk_ids_keyword, _ = keyword_search(user_prompt, num_results=20, config=my_config)
chunk_ids_hybrid, _ = hybrid_search(user_prompt, num_results=20, config=my_config)
# Retrieve chunks:
from raglite import retrieve_chunks
chunks_hybrid = retrieve_chunks(chunk_ids_hybrid, config=my_config)
# Rerank chunks and keep the top 5 (optional, but recommended):
from raglite import rerank_chunks
chunks_reranked = rerank_chunks(user_prompt, chunks_hybrid, config=my_config)
chunks_reranked = chunks_reranked[:5]
# Extend chunks with their neighbors and group them into chunk spans:
from raglite import retrieve_chunk_spans
chunk_spans = retrieve_chunk_spans(chunks_reranked, config=my_config)
# Append a RAG instruction based on the user prompt and context to the message history:
from raglite import create_rag_instruction
messages = [] # Or start with an existing message history.
messages.append(create_rag_instruction(user_prompt=user_prompt, context=chunk_spans))
# Stream the RAG response and append it to the message history:
from raglite import rag
stream = rag(messages, config=my_config)
for update in stream:
print(update, end="")
# Access the documents referenced in the RAG context:
documents = [chunk_span.document for chunk_span in chunk_spans]
```
### 4. Computing and using an optimal query adapter
RAGLite can compute and apply an [optimal closed-form query adapter](src/raglite/_query_adapter.py) to the prompt embedding to improve the output quality of RAG. To benefit from this, first generate a set of evals with `insert_evals` and then compute and store the optimal query adapter with `update_query_adapter`:
```python
# Improve RAG with an optimal query adapter:
from raglite import insert_evals, update_query_adapter
insert_evals(num_evals=100, config=my_config)
update_query_adapter(config=my_config) # From here, every vector search will use the query adapter.
```
### 5. Evaluation of retrieval and generation
If you installed the `ragas` extra, you can use RAGLite to answer the evals and then evaluate the quality of both the retrieval and generation steps of RAG using [Ragas](https://github.com/explodinggradients/ragas):
```python
# Evaluate retrieval and generation:
from raglite import answer_evals, evaluate, insert_evals
insert_evals(num_evals=100, config=my_config)
answered_evals_df = answer_evals(num_evals=10, config=my_config)
evaluation_df = evaluate(answered_evals_df, config=my_config)
```
### 6. Running a Model Context Protocol (MCP) server
RAGLite comes with an [MCP server](https://modelcontextprotocol.io) implemented with [FastMCP](https://github.com/jlowin/fastmcp) that exposes a `search_knowledge_base` [tool](https://github.com/jlowin/fastmcp?tab=readme-ov-file#tools). To use the server:
1. Install [Claude desktop](https://claude.ai/download)
2. Install [uv](https://docs.astral.sh/uv/getting-started/installation/) so that Claude desktop can start the server
3. Configure Claude desktop to use `uv` to start the MCP server with:
```
raglite \
--db-url sqlite:///raglite.db \
--llm llama-cpp-python/bartowski/Llama-3.2-3B-Instruct-GGUF/*Q4_K_M.gguf@4096 \
--embedder llama-cpp-python/lm-kit/bge-m3-gguf/*F16.gguf@1024 \
mcp install
```
To use an API-based LLM, make sure to include your credentials in a `.env` file or supply them inline:
```sh
OPENAI_API_KEY=sk-... raglite --llm gpt-4o-mini --embedder text-embedding-3-large mcp install
```
Now, when you start Claude desktop you should see a šØ icon at the bottom right of your prompt indicating that the Claude has successfully connected with the MCP server.
When relevant, Claude will suggest to use the `search_knowledge_base` tool that the MCP server provides. You can also explicitly ask Claude to search the knowledge base if you want to be certain that it does.
<div align="center"><video src="https://github.com/user-attachments/assets/3a597a17-874e-475f-a6dd-cd3ccf360fb9" /></div>
### 7. Serving a customizable ChatGPT-like frontend
If you installed the `chainlit` extra, you can serve a customizable ChatGPT-like frontend with:
```sh
raglite chainlit
```
The application is also deployable to [web](https://docs.chainlit.io/deploy/copilot), [Slack](https://docs.chainlit.io/deploy/slack), and [Teams](https://docs.chainlit.io/deploy/teams).
You can specify the database URL, LLM, and embedder directly in the Chainlit frontend, or with the CLI as follows:
```sh
raglite \
--db-url sqlite:///raglite.db \
--llm llama-cpp-python/bartowski/Llama-3.2-3B-Instruct-GGUF/*Q4_K_M.gguf@4096 \
--embedder llama-cpp-python/lm-kit/bge-m3-gguf/*F16.gguf@1024 \
chainlit
```
To use an API-based LLM, make sure to include your credentials in a `.env` file or supply them inline:
```sh
OPENAI_API_KEY=sk-... raglite --llm gpt-4o-mini --embedder text-embedding-3-large chainlit
```
<div align="center"><video src="https://github.com/user-attachments/assets/a303ed4a-54cd-45ea-a2b5-86e086053aed" /></div>
## Contributing
<details>
<summary>Prerequisites</summary>
<details>
<summary>1. Set up Git to use SSH</summary>
1. [Generate an SSH key](https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent#generating-a-new-ssh-key) and [add the SSH key to your GitHub account](https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account).
1. Configure SSH to automatically load your SSH keys:
```sh
cat << EOF >> ~/.ssh/config
Host *
AddKeysToAgent yes
IgnoreUnknown UseKeychain
UseKeychain yes
ForwardAgent yes
EOF
```
</details>
<details>
<summary>2. Install Docker</summary>
1. [Install Docker Desktop](https://www.docker.com/get-started).
- _Linux only_:
- Export your user's user id and group id so that [files created in the Dev Container are owned by your user](https://github.com/moby/moby/issues/3206):
```sh
cat << EOF >> ~/.bashrc
export UID=$(id --user)
export GID=$(id --group)
EOF
```
</details>
<details>
<summary>3. Install VS Code or PyCharm</summary>
1. [Install VS Code](https://code.visualstudio.com/) and [VS Code's Dev Containers extension](https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers). Alternatively, install [PyCharm](https://www.jetbrains.com/pycharm/download/).
2. _Optional:_ install a [Nerd Font](https://www.nerdfonts.com/font-downloads) such as [FiraCode Nerd Font](https://github.com/ryanoasis/nerd-fonts/tree/master/patched-fonts/FiraCode) and [configure VS Code](https://github.com/tonsky/FiraCode/wiki/VS-Code-Instructions) or [configure PyCharm](https://github.com/tonsky/FiraCode/wiki/Intellij-products-instructions) to use it.
</details>
</details>
<details open>
<summary>Development environments</summary>
The following development environments are supported:
1. āļø _GitHub Codespaces_: click on _Code_ and select _Create codespace_ to start a Dev Container with [GitHub Codespaces](https://github.com/features/codespaces).
1. āļø _Dev Container (with container volume)_: click on [Open in Dev Containers](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/superlinear-ai/raglite) to clone this repository in a container volume and create a Dev Container with VS Code.
1. _Dev Container_: clone this repository, open it with VS Code, and run <kbd>Ctrl/ā</kbd> + <kbd>ā§</kbd> + <kbd>P</kbd> ā _Dev Containers: Reopen in Container_.
1. _PyCharm_: clone this repository, open it with PyCharm, and [configure Docker Compose as a remote interpreter](https://www.jetbrains.com/help/pycharm/using-docker-compose-as-a-remote-interpreter.html#docker-compose-remote) with the `dev` service.
1. _Terminal_: clone this repository, open it with your terminal, and run `docker compose up --detach dev` to start a Dev Container in the background, and then run `docker compose exec dev zsh` to open a shell prompt in the Dev Container.
</details>
<details>
<summary>Developing</summary>
- This project follows the [Conventional Commits](https://www.conventionalcommits.org/) standard to automate [Semantic Versioning](https://semver.org/) and [Keep A Changelog](https://keepachangelog.com/) with [Commitizen](https://github.com/commitizen-tools/commitizen).
- Run `poe` from within the development environment to print a list of [Poe the Poet](https://github.com/nat-n/poethepoet) tasks available to run on this project.
- Run `poetry add {package}` from within the development environment to install a run time dependency and add it to `pyproject.toml` and `poetry.lock`. Add `--group test` or `--group dev` to install a CI or development dependency, respectively.
- Run `poetry update` from within the development environment to upgrade all dependencies to the latest versions allowed by `pyproject.toml`.
- Run `cz bump` to bump the package's version, update the `CHANGELOG.md`, and create a git tag.
</details>
## Star History
<a href="https://star-history.com/#superlinear-ai/raglite&Timeline">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=superlinear-ai/raglite&type=Timeline&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=superlinear-ai/raglite&type=Timeline" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=superlinear-ai/raglite&type=Timeline" />
</picture>
</a>
", Assign "at most 3 tags" to the expected json: {"id":"12367","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"