AI prompts
base on # Unitree RL GYM
This is a simple example of using Unitree Robots for reinforcement learning, including Unitree Go2, H1, H1_2, G1
| Isaac Gym | Mujoco | Physical |
|--- | --- | --- |
| [<img src="https://oss-global-cdn.unitree.com/static/32f06dc9dfe4452dac300dda45e86b34.GIF" width="240px">](https://oss-global-cdn.unitree.com/static/5bbc5ab1d551407080ca9d58d7bec1c8.mp4) | [<img src="https://oss-global-cdn.unitree.com/static/244cd5c4f823495fbfb67ef08f56aa33.GIF" width="240px">](https://oss-global-cdn.unitree.com/static/5aa48535ffd641e2932c0ba45c8e7854.mp4) | [<img src="https://oss-global-cdn.unitree.com/static/78c61459d3ab41448cfdb31f6a537e8b.GIF" width="240px">](https://oss-global-cdn.unitree.com/static/0818dcf7a6874b92997354d628adcacd.mp4) |
## 1. Installation
1. Create a new python virtual env with python 3.8
2. Install pytorch 2.3.1 with cuda-12.1:
```bash
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121
```
3. Install Isaac Gym
- Download and install Isaac Gym Preview 4 from [https://developer.nvidia.com/isaac-gym](https://developer.nvidia.com/isaac-gym)
- `cd isaacgym/python && pip install -e .`
- Try running an example `cd examples && python 1080_balls_of_solitude.py`
- For troubleshooting check docs isaacgym/docs/index.html
4. Install rsl_rl (PPO implementation)
- Clone [https://github.com/leggedrobotics/rsl_rl](https://github.com/leggedrobotics/rsl_rl)
- `cd rsl_rl && git checkout v1.0.2 && pip install -e .`
5. Install unitree_rl_gym
- Navigate to the folder `unitree_rl_gym`
- `pip install -e .`
6. Install unitree_sdk2py (Optional for deploy on real robot)
- Clone [https://github.com/unitreerobotics/unitree_sdk2_python](https://github.com/unitreerobotics/unitree_sdk2_python)
- `cd unitree_sdk2_python & pip install -e .`
## 2. Train in Isaac Gym
1. Train:
`python legged_gym/scripts/train.py --task=go2`
* To run on CPU add following arguments: `--sim_device=cpu`, `--rl_device=cpu` (sim on CPU and rl on GPU is possible).
* To run headless (no rendering) add `--headless`.
* **Important** : To improve performance, once the training starts press `v` to stop the rendering. You can then enable it later to check the progress.
* The trained policy is saved in `logs/<experiment_name>/<date_time>_<run_name>/model_<iteration>.pt`. Where `<experiment_name>` and `<run_name>` are defined in the train config.
* The following command line arguments override the values set in the config files:
* --task TASK: Task name.
* --resume: Resume training from a checkpoint
* --experiment_name EXPERIMENT_NAME: Name of the experiment to run or load.
* --run_name RUN_NAME: Name of the run.
* --load_run LOAD_RUN: Name of the run to load when resume=True. If -1: will load the last run.
* --checkpoint CHECKPOINT: Saved model checkpoint number. If -1: will load the last checkpoint.
* --num_envs NUM_ENVS: Number of environments to create.
* --seed SEED: Random seed.
* --max_iterations MAX_ITERATIONS: Maximum number of training iterations.
2. Play:`python legged_gym/scripts/play.py --task=go2`
* By default, the loaded policy is the last model of the last run of the experiment folder.
* Other runs/model iteration can be selected by setting `load_run` and `checkpoint` in the train config.
### 2.1 Play Demo
| Go2 | G1 | H1 | H1_2 |
|--- | --- | --- | --- |
| [![go2](https://oss-global-cdn.unitree.com/static/ba006789e0af4fe3867255f507032cd7.GIF)](https://oss-global-cdn.unitree.com/static/d2e8da875473457c8d5d69c3de58b24d.mp4) | [![g1](https://oss-global-cdn.unitree.com/static/32f06dc9dfe4452dac300dda45e86b34.GIF)](https://oss-global-cdn.unitree.com/static/5bbc5ab1d551407080ca9d58d7bec1c8.mp4) | [![h1](https://oss-global-cdn.unitree.com/static/fa04e73966934efa9838e9c389f48fa2.GIF)](https://oss-global-cdn.unitree.com/static/522128f4640c4f348296d2761a33bf98.mp4) |[![h1_2](https://oss-global-cdn.unitree.com/static/83ed59ca0dab4a51906aff1f93428650.GIF)](https://oss-global-cdn.unitree.com/static/15fa46984f2343cb83342fd39f5ab7b2.mp4)|
## 3. Sim in Mujoco
### 3.1 Mujoco Usage
To execute sim2sim in mujoco, execute the following command:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py {config_name}
```
`config_name`: The file name of the configuration file. The configuration file will be found under `deploy/deploy_mujoco/configs/`, for example `g1.yaml`, `h1.yaml`, `h1_2.yaml`.
**example**:
```bash
python deploy/deploy_mujoco/deploy_mujoco.py g1.yaml
```
### 3.2 Mujoco Demo
| G1 | H1 | H1_2 |
|--- | --- | --- |
| [![mujoco_g1](https://oss-global-cdn.unitree.com/static/244cd5c4f823495fbfb67ef08f56aa33.GIF)](https://oss-global-cdn.unitree.com/static/5aa48535ffd641e2932c0ba45c8e7854.mp4) | [![mujoco_h1](https://oss-global-cdn.unitree.com/static/7ab4e8392e794e01b975efa205ef491e.GIF)](https://oss-global-cdn.unitree.com/static/8934052becd84d08bc8c18c95849cf32.mp4) | [![mujoco_h1_2](https://oss-global-cdn.unitree.com/static/2905e2fe9b3340159d749d5e0bc95cc4.GIF)](https://oss-global-cdn.unitree.com/static/ee7ee85bd6d249989a905c55c7a9d305.mp4) |
## 4. Deploy on Physical Robot
reference to [Deploy on Physical Robot(English)](deploy/deploy_real/README.md) | [实物部署(简体中文)](deploy/deploy_real/README.zh.md)
", Assign "at most 3 tags" to the expected json: {"id":"12478","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"