AI prompts
base on LM Studio TypeScript SDK <p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/lmstudio-ai/lmstudio.js/assets/3611042/dd0b2298-beec-4dfe-9019-7d4dc5427e40">
<source media="(prefers-color-scheme: light)" srcset="https://github.com/lmstudio-ai/lmstudio.js/assets/3611042/70f24e8f-302b-465d-8607-8c3f36cd4934">
<img alt="lmstudio javascript library logo" src="https://github.com/lmstudio-ai/lmstudio.js/assets/3611042/70f24e8f-302b-465d-8607-8c3f36cd4934" width="290" height="86" style="max-width: 100%;">
</picture>
</p>
<p align="center"><code>Use local LLMs in JS/TS/Node</code></p>
<p align="center"><i>LM Studio Client SDK</i></p>
`lmstudio-ts` is LM Studio's official JavaScript/TypeScript client SDK, it allows you to
- Use LLMs to [respond in chats](https://lmstudio.ai/docs/typescript/llm-prediction/chat-completion) or predict [text completions](https://lmstudio.ai/docs/typescript/llm-prediction/completion)
- Define functions as tools, and turn LLMs into [autonomous agents](https://lmstudio.ai/docs/typescript/agent/act) that run completely locally
- [Load](https://lmstudio.ai/docs/typescript/manage-models/loading), [configure](https://lmstudio.ai/docs/typescript/llm-prediction/parameters), and [unload](https://lmstudio.ai/docs/typescript/manage-models/loading) models from memory
- Supports both browser and any Node-compatible environments
- Generate embeddings for text, and more!
> Using python? See [lmstudio-python](https://github.com/lmstudio-ai/lmstudio-python)
## Installation
```bash
npm install @lmstudio/sdk --save
```
## Quick Example
```ts
import { LMStudioClient } from "@lmstudio/sdk";
const client = new LMStudioClient();
const model = await client.llm.model("llama-3.2-1b-instruct");
const result = await model.respond("What is the meaning of life?");
console.info(result.content);
```
For more examples and documentation, visit [lmstudio-js docs](https://lmstudio.ai/docs/typescript).
## Why use `lmstudio-js` over `openai` sdk?
Open AI's SDK is designed to use with Open AI's proprietary models. As such, it is missing many features that are essential for using LLMs in a local environment, such as:
- Managing loading and unloading models from memory
- Configuring load parameters (context length, gpu offload settings, etc.)
- Speculative decoding
- Getting information (such as context length, model size, etc.) about a model
- ... and more
In addition, while `openai` sdk is automatically generated, `lmstudio-js` is designed from ground-up to be clean and easy to use for TypeScript/JavaScript developers.
## Contributing
You can build the project locally by following these steps:
```bash
git clone https://github.com/lmstudio-ai/lmstudio-js.git --recursive
cd lmstudio-js
npm install
npm run build
```
See [CONTRIBUTING.md](CONTRIBUTING.md) for more information.
## Community
<p>Discuss all things lmstudio-js in <a href="https://discord.gg/aPQfnNkxGC">#dev-chat</a> in LM Studio's Community Discord server.</p>
<a href="https://discord.gg/aPQfnNkxGC"><img alt="Discord" src="https://img.shields.io/discord/1110598183144399058?logo=discord&style=flat&logoColor=white"></a>
", Assign "at most 3 tags" to the expected json: {"id":"12872","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"