AI prompts
base on Data transformation framework for AI. Ultra performant, with incremental processing. <p align="center">
<img src="https://cocoindex.io/images/github.svg" alt="CocoIndex">
</p>
<h1 align="center">Data transformation for AI</h1>
<div align="center">
[](https://github.com/cocoindex-io/cocoindex)
[](https://cocoindex.io/docs/getting_started/quickstart)
[](https://opensource.org/licenses/Apache-2.0)
[](https://pypi.org/project/cocoindex/)
<!--[](https://pypistats.org/packages/cocoindex) -->
[](https://pepy.tech/projects/cocoindex)
[](https://github.com/cocoindex-io/cocoindex/actions/workflows/CI.yml)
[](https://github.com/cocoindex-io/cocoindex/actions/workflows/release.yml)
[](https://discord.com/invite/zpA9S2DR7s)
</div>
<div align="center">
<a href="https://trendshift.io/repositories/13939" target="_blank"><img src="https://trendshift.io/api/badge/repositories/13939" alt="cocoindex-io%2Fcocoindex | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
Ultra performant data transformation framework for AI, with core engine written in Rust. Support incremental processing and data lineage out-of-box. Exceptional developer velocity. Production-ready at day 0.
⭐ Drop a star to help us grow!
<div align="center">
<!-- Keep these links. Translations will automatically update with the README. -->
[Deutsch](https://readme-i18n.com/cocoindex-io/cocoindex?lang=de) |
[English](https://readme-i18n.com/cocoindex-io/cocoindex?lang=en) |
[Español](https://readme-i18n.com/cocoindex-io/cocoindex?lang=es) |
[français](https://readme-i18n.com/cocoindex-io/cocoindex?lang=fr) |
[日本語](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ja) |
[한국어](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ko) |
[Português](https://readme-i18n.com/cocoindex-io/cocoindex?lang=pt) |
[Русский](https://readme-i18n.com/cocoindex-io/cocoindex?lang=ru) |
[中文](https://readme-i18n.com/cocoindex-io/cocoindex?lang=zh)
</div>
</br>
<p align="center">
<img src="https://cocoindex.io/images/transformation.svg" alt="CocoIndex Transformation">
</p>
</br>
CocoIndex makes it effortless to transform data with AI, and keep source data and target in sync. Whether you’re building a vector index for RAG, creating knowledge graphs, or performing any custom data transformations — goes beyond SQL.
</br>
<p align="center">
<img alt="CocoIndex Features" src="https://cocoindex.io/images/venn2.svg" />
</p>
</br>
## Exceptional velocity
Just declare transformation in dataflow with ~100 lines of python
```python
# import
data['content'] = flow_builder.add_source(...)
# transform
data['out'] = data['content']
.transform(...)
.transform(...)
# collect data
collector.collect(...)
# export to db, vector db, graph db ...
collector.export(...)
```
CocoIndex follows the idea of [Dataflow](https://en.wikipedia.org/wiki/Dataflow_programming) programming model. Each transformation creates a new field solely based on input fields, without hidden states and value mutation. All data before/after each transformation is observable, with lineage out of the box.
**Particularly**, developers don't explicitly mutate data by creating, updating and deleting. They just need to define transformation/formula for a set of source data.
## Plug-and-Play Building Blocks
Native builtins for different source, targets and transformations. Standardize interface, make it 1-line code switch between different components - as easy as assembling building blocks.
<p align="center">
<img src="https://cocoindex.io/images/components.svg" alt="CocoIndex Features">
</p>
## Data Freshness
CocoIndex keep source data and target in sync effortlessly.
<p align="center">
<img src="https://github.com/user-attachments/assets/f4eb29b3-84ee-4fa0-a1e2-80eedeeabde6" alt="Incremental Processing" width="700">
</p>
It has out-of-box support for incremental indexing:
- minimal recomputation on source or logic change.
- (re-)processing necessary portions; reuse cache when possible
## Quick Start:
If you're new to CocoIndex, we recommend checking out
- 📖 [Documentation](https://cocoindex.io/docs)
- ⚡ [Quick Start Guide](https://cocoindex.io/docs/getting_started/quickstart)
- 🎬 [Quick Start Video Tutorial](https://youtu.be/gv5R8nOXsWU?si=9ioeKYkMEnYevTXT)
### Setup
1. Install CocoIndex Python library
```bash
pip install -U cocoindex
```
2. [Install Postgres](https://cocoindex.io/docs/getting_started/installation#-install-postgres) if you don't have one. CocoIndex uses it for incremental processing.
## Define data flow
Follow [Quick Start Guide](https://cocoindex.io/docs/getting_started/quickstart) to define your first indexing flow. An example flow looks like:
```python
@cocoindex.flow_def(name="TextEmbedding")
def text_embedding_flow(flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope):
# Add a data source to read files from a directory
data_scope["documents"] = flow_builder.add_source(cocoindex.sources.LocalFile(path="markdown_files"))
# Add a collector for data to be exported to the vector index
doc_embeddings = data_scope.add_collector()
# Transform data of each document
with data_scope["documents"].row() as doc:
# Split the document into chunks, put into `chunks` field
doc["chunks"] = doc["content"].transform(
cocoindex.functions.SplitRecursively(),
language="markdown", chunk_size=2000, chunk_overlap=500)
# Transform data of each chunk
with doc["chunks"].row() as chunk:
# Embed the chunk, put into `embedding` field
chunk["embedding"] = chunk["text"].transform(
cocoindex.functions.SentenceTransformerEmbed(
model="sentence-transformers/all-MiniLM-L6-v2"))
# Collect the chunk into the collector.
doc_embeddings.collect(filename=doc["filename"], location=chunk["location"],
text=chunk["text"], embedding=chunk["embedding"])
# Export collected data to a vector index.
doc_embeddings.export(
"doc_embeddings",
cocoindex.targets.Postgres(),
primary_key_fields=["filename", "location"],
vector_indexes=[
cocoindex.VectorIndexDef(
field_name="embedding",
metric=cocoindex.VectorSimilarityMetric.COSINE_SIMILARITY)])
```
It defines an index flow like this:
<p align="center">
<img width="400" alt="Data Flow" src="https://github.com/user-attachments/assets/2ea7be6d-3d94-42b1-b2bd-22515577e463" />
</p>
## 🚀 Examples and demo
| Example | Description |
|---------|-------------|
| [Text Embedding](examples/text_embedding) | Index text documents with embeddings for semantic search |
| [Code Embedding](examples/code_embedding) | Index code embeddings for semantic search |
| [PDF Embedding](examples/pdf_embedding) | Parse PDF and index text embeddings for semantic search |
| [Manuals LLM Extraction](examples/manuals_llm_extraction) | Extract structured information from a manual using LLM |
| [Amazon S3 Embedding](examples/amazon_s3_embedding) | Index text documents from Amazon S3 |
| [Azure Blob Storage Embedding](examples/azure_blob_embedding) | Index text documents from Azure Blob Storage |
| [Google Drive Text Embedding](examples/gdrive_text_embedding) | Index text documents from Google Drive |
| [Docs to Knowledge Graph](examples/docs_to_knowledge_graph) | Extract relationships from Markdown documents and build a knowledge graph |
| [Embeddings to Qdrant](examples/text_embedding_qdrant) | Index documents in a Qdrant collection for semantic search |
| [FastAPI Server with Docker](examples/fastapi_server_docker) | Run the semantic search server in a Dockerized FastAPI setup |
| [Product Recommendation](examples/product_recommendation) | Build real-time product recommendations with LLM and graph database|
| [Image Search with Vision API](examples/image_search) | Generates detailed captions for images using a vision model, embeds them, enables live-updating semantic search via FastAPI and served on a React frontend|
| [Face Recognition](examples/face_recognition) | Recognize faces in images and build embedding index |
| [Paper Metadata](examples/paper_metadata) | Index papers in PDF files, and build metadata tables for each paper |
| [Multi Format Indexing](examples/multi_format_indexing) | Build visual document index from PDFs and images with ColPali for semantic search |
| [Custom Output Files](examples/custom_output_files) | Convert markdown files to HTML files and save them to a local directory, using *CocoIndex Custom Targets* |
| [Patient intake form extraction](examples/patient_intake_extraction) | Use LLM to extract structured data from patient intake forms with different formats |
More coming and stay tuned 👀!
## 📖 Documentation
For detailed documentation, visit [CocoIndex Documentation](https://cocoindex.io/docs), including a [Quickstart guide](https://cocoindex.io/docs/getting_started/quickstart).
## 🤝 Contributing
We love contributions from our community ❤️. For details on contributing or running the project for development, check out our [contributing guide](https://cocoindex.io/docs/about/contributing).
## 👥 Community
Welcome with a huge coconut hug 🥥⋆。˚🤗. We are super excited for community contributions of all kinds - whether it's code improvements, documentation updates, issue reports, feature requests, and discussions in our Discord.
Join our community here:
- 🌟 [Star us on GitHub](https://github.com/cocoindex-io/cocoindex)
- 👋 [Join our Discord community](https://discord.com/invite/zpA9S2DR7s)
- ▶️ [Subscribe to our YouTube channel](https://www.youtube.com/@cocoindex-io)
- 📜 [Read our blog posts](https://cocoindex.io/blogs/)
## Support us:
We are constantly improving, and more features and examples are coming soon. If you love this project, please drop us a star ⭐ at GitHub repo [](https://github.com/cocoindex-io/cocoindex) to stay tuned and help us grow.
## License
CocoIndex is Apache 2.0 licensed.
", Assign "at most 3 tags" to the expected json: {"id":"13939","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"