AI prompts
base on # MCP CLI - Model Context Protocol Command Line Interface
A powerful, feature-rich command-line interface for interacting with Model Context Protocol servers. This client enables seamless communication with LLMs through integration with the [CHUK Tool Processor](https://github.com/chrishayuk/chuk-tool-processor) and [CHUK-LLM](https://github.com/chrishayuk/chuk-llm), providing tool usage, conversation management, and multiple operational modes.
**Default Configuration**: MCP CLI defaults to using Ollama with the `gpt-oss` reasoning model for local, privacy-focused operation without requiring API keys.
## 🔄 Architecture Overview
The MCP CLI is built on a modular architecture with clean separation of concerns:
- **[CHUK Tool Processor](https://github.com/chrishayuk/chuk-tool-processor)**: Async-native tool execution and MCP server communication
- **[CHUK-LLM](https://github.com/chrishayuk/chuk-llm)**: Unified LLM provider configuration and client management with 200+ auto-generated functions
- **[CHUK-Term](https://github.com/chrishayuk/chuk-term)**: Enhanced terminal UI with themes, cross-platform terminal management, and rich formatting
- **MCP CLI**: Command orchestration and integration layer (this project)
## 🌟 Features
### Multiple Operational Modes
- **Chat Mode**: Conversational interface with streaming responses and automated tool usage (default: Ollama/gpt-oss)
- **Interactive Mode**: Command-driven shell interface for direct server operations
- **Command Mode**: Unix-friendly mode for scriptable automation and pipelines
- **Direct Commands**: Run individual commands without entering interactive mode
### Advanced Chat Interface
- **Streaming Responses**: Real-time response generation with live UI updates
- **Reasoning Visibility**: See AI's thinking process with reasoning models (gpt-oss, GPT-5, Claude 4)
- **Concurrent Tool Execution**: Execute multiple tools simultaneously while preserving conversation order
- **Smart Interruption**: Interrupt streaming responses or tool execution with Ctrl+C
- **Performance Metrics**: Response timing, words/second, and execution statistics
- **Rich Formatting**: Markdown rendering, syntax highlighting, and progress indicators
### Comprehensive Provider Support
MCP CLI supports all providers and models from CHUK-LLM, including cutting-edge reasoning models:
| Provider | Key Models | Special Features |
|----------|------------|------------------|
| **Ollama** (Default) | 🧠 gpt-oss, llama3.3, llama3.2, qwen3, qwen2.5-coder, deepseek-coder, granite3.3, mistral, gemma3, phi3, codellama | Local reasoning models, privacy-focused, no API key required |
| **OpenAI** | 🚀 GPT-5 family (gpt-5, gpt-5-mini, gpt-5-nano), GPT-4o family, O3 series (o3, o3-mini) | Advanced reasoning, function calling, vision |
| **Anthropic** | 🧠 Claude 4 family (claude-4-1-opus, claude-4-sonnet), Claude 3.5 Sonnet | Enhanced reasoning, long context |
| **Azure OpenAI** 🏢 | Enterprise GPT-5, GPT-4 models | Private endpoints, compliance, audit logs |
| **Google Gemini** | Gemini 2.0 Flash, Gemini 1.5 Pro | Multimodal, fast inference |
| **Groq** ⚡ | Llama 3.1 models, Mixtral | Ultra-fast inference (500+ tokens/sec) |
| **Perplexity** 🌐 | Sonar models | Real-time web search with citations |
| **IBM watsonx** 🏢 | Granite, Llama models | Enterprise compliance |
| **Mistral AI** 🇪🇺 | Mistral Large, Medium | European, efficient models |
### Robust Tool System
- **Automatic Discovery**: Server-provided tools are automatically detected and catalogued
- **Provider Adaptation**: Tool names are automatically sanitized for provider compatibility
- **Concurrent Execution**: Multiple tools can run simultaneously with proper coordination
- **Rich Progress Display**: Real-time progress indicators and execution timing
- **Tool History**: Complete audit trail of all tool executions
- **Streaming Tool Calls**: Support for tools that return streaming data
### Advanced Configuration Management
- **Environment Integration**: API keys and settings via environment variables
- **File-based Config**: YAML and JSON configuration files
- **User Preferences**: Persistent settings for active providers and models
- **Validation & Diagnostics**: Built-in provider health checks and configuration validation
### Enhanced User Experience
- **Cross-Platform Support**: Windows, macOS, and Linux with platform-specific optimizations via chuk-term
- **Rich Console Output**: Powered by chuk-term with 8 built-in themes (default, dark, light, minimal, terminal, monokai, dracula, solarized)
- **Advanced Terminal Management**: Cross-platform terminal operations including clearing, resizing, color detection, and cursor control
- **Interactive UI Components**: User input handling through chuk-term's prompt system (ask, confirm, select_from_list, select_multiple)
- **Command Completion**: Context-aware tab completion for all interfaces
- **Comprehensive Help**: Detailed help system with examples and usage patterns
- **Graceful Error Handling**: User-friendly error messages with troubleshooting hints
## 📋 Prerequisites
- **Python 3.11 or higher**
- **For Local Operation (Default)**:
- Ollama: Install from [ollama.ai](https://ollama.ai)
- Pull the default reasoning model: `ollama pull gpt-oss`
- **For Cloud Providers** (Optional):
- OpenAI: `OPENAI_API_KEY` environment variable (for GPT-5, GPT-4, O3 models)
- Anthropic: `ANTHROPIC_API_KEY` environment variable (for Claude 4, Claude 3.5)
- Azure: `AZURE_OPENAI_API_KEY` and `AZURE_OPENAI_ENDPOINT` (for enterprise GPT-5)
- Google: `GEMINI_API_KEY` (for Gemini models)
- Groq: `GROQ_API_KEY` (for fast Llama models)
- Custom providers: Provider-specific configuration
- **MCP Servers**: Server configuration file (default: `server_config.json`)
## 🚀 Installation
### Quick Start with Ollama (Default)
1. **Install Ollama** (if not already installed):
```bash
# macOS/Linux
curl -fsSL https://ollama.ai/install.sh | sh
# Or visit https://ollama.ai for other installation methods
```
2. **Pull the default reasoning model**:
```bash
ollama pull gpt-oss # Open-source reasoning model with thinking visibility
```
3. **Install and run MCP CLI**:
```bash
# Using uvx (recommended)
uvx mcp-cli --help
# Or install from source
git clone https://github.com/chrishayuk/mcp-cli
cd mcp-cli
pip install -e "."
mcp-cli --help
```
### Using Different Models
```bash
# === LOCAL MODELS (No API Key Required) ===
# Use default reasoning model (gpt-oss)
mcp-cli --server sqlite
# Use other Ollama models
mcp-cli --model llama3.3 # Latest Llama
mcp-cli --model qwen2.5-coder # Coding-focused
mcp-cli --model deepseek-coder # Another coding model
mcp-cli --model granite3.3 # IBM Granite
# === CLOUD PROVIDERS (API Keys Required) ===
# GPT-5 Family (requires OpenAI API key)
mcp-cli --provider openai --model gpt-5 # Full GPT-5 with reasoning
mcp-cli --provider openai --model gpt-5-mini # Efficient GPT-5 variant
mcp-cli --provider openai --model gpt-5-nano # Ultra-lightweight GPT-5
# GPT-4 Family
mcp-cli --provider openai --model gpt-4o # GPT-4 Optimized
mcp-cli --provider openai --model gpt-4o-mini # Smaller GPT-4
# O3 Reasoning Models
mcp-cli --provider openai --model o3 # O3 reasoning
mcp-cli --provider openai --model o3-mini # Efficient O3
# Claude 4 Family (requires Anthropic API key)
mcp-cli --provider anthropic --model claude-4-1-opus # Most advanced Claude
mcp-cli --provider anthropic --model claude-4-sonnet # Balanced Claude 4
mcp-cli --provider anthropic --model claude-3-5-sonnet # Claude 3.5
# Enterprise Azure (requires Azure configuration)
mcp-cli --provider azure_openai --model gpt-5 # Enterprise GPT-5
# Other Providers
mcp-cli --provider gemini --model gemini-2.0-flash # Google Gemini
mcp-cli --provider groq --model llama-3.1-70b # Fast Llama via Groq
```
## 🧰 Global Configuration
### Default Configuration
MCP CLI defaults to:
- **Provider**: `ollama` (local, no API key required)
- **Model**: `gpt-oss` (open-source reasoning model with thinking visibility)
### Command-line Arguments
Global options available for all modes and commands:
- `--server`: Specify server(s) to connect to (comma-separated)
- `--config-file`: Path to server configuration file (default: `server_config.json`)
- `--provider`: LLM provider (default: `ollama`)
- `--model`: Specific model to use (default: `gpt-oss` for Ollama)
- `--disable-filesystem`: Disable filesystem access (default: enabled)
- `--api-base`: Override API endpoint URL
- `--api-key`: Override API key (not needed for Ollama)
- `--verbose`: Enable detailed logging
- `--quiet`: Suppress non-essential output
### Environment Variables
```bash
# Override defaults
export LLM_PROVIDER=ollama # Default provider (already the default)
export LLM_MODEL=gpt-oss # Default model (already the default)
# For cloud providers (optional)
export OPENAI_API_KEY=sk-... # For GPT-5, GPT-4, O3 models
export ANTHROPIC_API_KEY=sk-ant-... # For Claude 4, Claude 3.5
export AZURE_OPENAI_API_KEY=sk-... # For enterprise GPT-5
export AZURE_OPENAI_ENDPOINT=https://...
export GEMINI_API_KEY=... # For Gemini models
export GROQ_API_KEY=... # For Groq fast inference
# Tool configuration
export MCP_TOOL_TIMEOUT=120 # Tool execution timeout (seconds)
```
## 🌐 Available Modes
### 1. Chat Mode (Default)
Provides a natural language interface with streaming responses and automatic tool usage:
```bash
# Default mode with Ollama/gpt-oss reasoning model (no API key needed)
mcp-cli --server sqlite
# See the AI's thinking process with reasoning models
mcp-cli --server sqlite --model gpt-oss # Open-source reasoning
mcp-cli --server sqlite --provider openai --model gpt-5 # GPT-5 reasoning
mcp-cli --server sqlite --provider anthropic --model claude-4-1-opus # Claude 4 reasoning
# Use different local models
mcp-cli --server sqlite --model llama3.3
mcp-cli --server sqlite --model qwen2.5-coder
# Switch to cloud providers (requires API keys)
mcp-cli chat --server sqlite --provider openai --model gpt-5
mcp-cli chat --server sqlite --provider anthropic --model claude-4-sonnet
```
### 2. Interactive Mode
Command-driven shell interface for direct server operations:
```bash
mcp-cli interactive --server sqlite
# With specific models
mcp-cli interactive --server sqlite --model gpt-oss # Local reasoning
mcp-cli interactive --server sqlite --provider openai --model gpt-5 # Cloud GPT-5
```
### 3. Command Mode
Unix-friendly interface for automation and scripting:
```bash
# Process text with reasoning models
mcp-cli cmd --server sqlite --model gpt-oss --prompt "Think through this step by step" --input data.txt
# Use GPT-5 for complex reasoning
mcp-cli cmd --server sqlite --provider openai --model gpt-5 --prompt "Analyze this data" --input data.txt
# Execute tools directly
mcp-cli cmd --server sqlite --tool list_tables --output tables.json
# Pipeline-friendly processing
echo "SELECT * FROM users LIMIT 5" | mcp-cli cmd --server sqlite --tool read_query --input -
```
### 4. Direct Commands
Execute individual commands without entering interactive mode:
```bash
# List available tools
mcp-cli tools --server sqlite
# Show provider configuration
mcp-cli provider list
# Show available models for current provider
mcp-cli models
# Show models for specific provider
mcp-cli models openai # Shows GPT-5, GPT-4, O3 models
mcp-cli models anthropic # Shows Claude 4, Claude 3.5 models
mcp-cli models ollama # Shows gpt-oss, llama3.3, etc.
# Ping servers
mcp-cli ping --server sqlite
# List resources
mcp-cli resources --server sqlite
# UI Theme Management
mcp-cli theme # Show current theme and list available
mcp-cli theme dark # Switch to dark theme
mcp-cli theme --select # Interactive theme selector
mcp-cli theme --list # List all available themes
```
## 🤖 Using Chat Mode
Chat mode provides the most advanced interface with streaming responses and intelligent tool usage.
### Starting Chat Mode
```bash
# Simple startup with default reasoning model (gpt-oss)
mcp-cli --server sqlite
# Multiple servers
mcp-cli --server sqlite,filesystem
# With advanced reasoning models
mcp-cli --server sqlite --provider openai --model gpt-5
mcp-cli --server sqlite --provider anthropic --model claude-4-1-opus
```
### Chat Commands (Slash Commands)
#### Provider & Model Management
```bash
/provider # Show current configuration (default: ollama)
/provider list # List all providers
/provider config # Show detailed configuration
/provider diagnostic # Test provider connectivity
/provider set ollama api_base http://localhost:11434 # Configure Ollama endpoint
/provider openai # Switch to OpenAI (requires API key)
/provider anthropic # Switch to Anthropic (requires API key)
/provider openai gpt-5 # Switch to OpenAI GPT-5
/model # Show current model (default: gpt-oss)
/model llama3.3 # Switch to different Ollama model
/model gpt-5 # Switch to GPT-5 (if using OpenAI)
/model claude-4-1-opus # Switch to Claude 4 (if using Anthropic)
/models # List available models for current provider
```
#### Tool Management
```bash
/tools # List available tools
/tools --all # Show detailed tool information
/tools --raw # Show raw JSON definitions
/tools call # Interactive tool execution
/toolhistory # Show tool execution history
/th -n 5 # Last 5 tool calls
/th 3 # Details for call #3
/th --json # Full history as JSON
```
#### Conversation Management
```bash
/conversation # Show conversation history
/ch -n 10 # Last 10 messages
/ch 5 # Details for message #5
/ch --json # Full history as JSON
/save conversation.json # Save conversation to file
/compact # Summarize conversation
/clear # Clear conversation history
/cls # Clear screen only
```
#### UI Customization
```bash
/theme # Interactive theme selector with preview
/theme dark # Switch to dark theme
/theme monokai # Switch to monokai theme
# Available themes: default, dark, light, minimal, terminal, monokai, dracula, solarized
# Themes are persisted across sessions
```
#### Session Control
```bash
/verbose # Toggle verbose/compact display (Default: Enabled)
/confirm # Toggle tool call confirmation (Default: Enabled)
/interrupt # Stop running operations
/servers # List connected servers
/help # Show all commands
/help tools # Help for specific command
/exit # Exit chat mode
```
### Chat Features
#### Streaming Responses with Reasoning Visibility
- **🧠 Reasoning Models**: See the AI's thinking process with gpt-oss, GPT-5, Claude 4
- **Real-time Generation**: Watch text appear token by token
- **Performance Metrics**: Words/second, response time
- **Graceful Interruption**: Ctrl+C to stop streaming
- **Progressive Rendering**: Markdown formatted as it streams
#### Tool Execution
- Automatic tool discovery and usage
- Concurrent execution with progress indicators
- Verbose and compact display modes
- Complete execution history and timing
#### Provider Integration
- Seamless switching between providers
- Model-specific optimizations
- API key and endpoint management
- Health monitoring and diagnostics
## 🖥️ Using Interactive Mode
Interactive mode provides a command shell for direct server interaction.
### Starting Interactive Mode
```bash
mcp-cli interactive --server sqlite
```
### Interactive Commands
```bash
help # Show available commands
exit # Exit interactive mode
clear # Clear terminal
# Provider management
provider # Show current provider
provider list # List providers
provider anthropic # Switch provider
provider openai gpt-5 # Switch to GPT-5
# Model management
model # Show current model
model gpt-oss # Switch to reasoning model
model claude-4-1-opus # Switch to Claude 4
models # List available models
# Tool operations
tools # List tools
tools --all # Detailed tool info
tools call # Interactive tool execution
# Server operations
servers # List servers
ping # Ping all servers
resources # List resources
prompts # List prompts
```
## 📄 Using Command Mode
Command mode provides Unix-friendly automation capabilities.
### Command Mode Options
```bash
--input FILE # Input file (- for stdin)
--output FILE # Output file (- for stdout)
--prompt TEXT # Prompt template
--tool TOOL # Execute specific tool
--tool-args JSON # Tool arguments as JSON
--system-prompt TEXT # Custom system prompt
--raw # Raw output without formatting
--single-turn # Disable multi-turn conversation
--max-turns N # Maximum conversation turns
```
### Examples
```bash
# Text processing with reasoning models
echo "Analyze this data" | mcp-cli cmd --server sqlite --model gpt-oss --input - --output analysis.txt
# Use GPT-5 for complex analysis
mcp-cli cmd --server sqlite --provider openai --model gpt-5 --prompt "Provide strategic analysis" --input report.txt
# Tool execution
mcp-cli cmd --server sqlite --tool list_tables --raw
# Complex queries
mcp-cli cmd --server sqlite --tool read_query --tool-args '{"query": "SELECT COUNT(*) FROM users"}'
# Batch processing with GNU Parallel
ls *.txt | parallel mcp-cli cmd --server sqlite --input {} --output {}.summary --prompt "Summarize: {{input}}"
```
## 🔧 Provider Configuration
### Ollama Configuration (Default)
Ollama runs locally by default on `http://localhost:11434`. To use reasoning and other models:
```bash
# Pull reasoning and other models for Ollama
ollama pull gpt-oss # Default reasoning model
ollama pull llama3.3 # Latest Llama
ollama pull llama3.2 # Llama 3.2
ollama pull qwen3 # Qwen 3
ollama pull qwen2.5-coder # Coding-focused
ollama pull deepseek-coder # DeepSeek coder
ollama pull granite3.3 # IBM Granite
ollama pull mistral # Mistral
ollama pull gemma3 # Google Gemma
ollama pull phi3 # Microsoft Phi
ollama pull codellama # Code Llama
# List available Ollama models
ollama list
# Configure remote Ollama server
mcp-cli provider set ollama api_base http://remote-server:11434
```
### Cloud Provider Configuration
To use cloud providers with advanced models, configure API keys:
```bash
# Configure OpenAI (for GPT-5, GPT-4, O3 models)
mcp-cli provider set openai api_key sk-your-key-here
# Configure Anthropic (for Claude 4, Claude 3.5)
mcp-cli provider set anthropic api_key sk-ant-your-key-here
# Configure Azure OpenAI (for enterprise GPT-5)
mcp-cli provider set azure_openai api_key sk-your-key-here
mcp-cli provider set azure_openai api_base https://your-resource.openai.azure.com
# Configure other providers
mcp-cli provider set gemini api_key your-gemini-key
mcp-cli provider set groq api_key your-groq-key
# Test configuration
mcp-cli provider diagnostic openai
mcp-cli provider diagnostic anthropic
```
### Manual Configuration
The `chuk_llm` library configuration in `~/.chuk_llm/config.yaml`:
```yaml
ollama:
api_base: http://localhost:11434
default_model: gpt-oss
openai:
api_base: https://api.openai.com/v1
default_model: gpt-5
anthropic:
api_base: https://api.anthropic.com
default_model: claude-4-1-opus
azure_openai:
api_base: https://your-resource.openai.azure.com
default_model: gpt-5
gemini:
api_base: https://generativelanguage.googleapis.com
default_model: gemini-2.0-flash
groq:
api_base: https://api.groq.com
default_model: llama-3.1-70b
```
API keys (if using cloud providers) in `~/.chuk_llm/.env`:
```bash
OPENAI_API_KEY=sk-your-key-here
ANTHROPIC_API_KEY=sk-ant-your-key-here
AZURE_OPENAI_API_KEY=sk-your-azure-key-here
GEMINI_API_KEY=your-gemini-key
GROQ_API_KEY=your-groq-key
```
## 📂 Server Configuration
Create a `server_config.json` file with your MCP server configurations:
```json
{
"mcpServers": {
"sqlite": {
"command": "python",
"args": ["-m", "mcp_server.sqlite_server"],
"env": {
"DATABASE_PATH": "database.db"
}
},
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/path/to/allowed/files"],
"env": {}
},
"brave-search": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-brave-search"],
"env": {
"BRAVE_API_KEY": "your-brave-api-key"
}
}
}
}
```
## 📈 Advanced Usage Examples
### Reasoning Model Comparison
```bash
# Compare reasoning across different models
> /provider ollama
> /model gpt-oss
> Think through this problem step by step: If a train leaves New York at 3 PM...
[See the complete thinking process with gpt-oss]
> /provider openai
> /model gpt-5
> Think through this problem step by step: If a train leaves New York at 3 PM...
[See GPT-5's reasoning approach]
> /provider anthropic
> /model claude-4-1-opus
> Think through this problem step by step: If a train leaves New York at 3 PM...
[See Claude 4's analytical process]
```
### Local-First Workflow with Reasoning
```bash
# Start with default Ollama/gpt-oss (no API key needed)
mcp-cli chat --server sqlite
# Use reasoning model for complex problems
> Think through this database optimization problem step by step
[gpt-oss shows its complete thinking process before answering]
# Try different local models for different tasks
> /model llama3.3 # General purpose
> /model qwen2.5-coder # For coding tasks
> /model deepseek-coder # Alternative coding model
> /model granite3.3 # IBM's model
> /model gpt-oss # Back to reasoning model
# Switch to cloud when needed (requires API keys)
> /provider openai
> /model gpt-5
> Complex enterprise architecture design...
> /provider anthropic
> /model claude-4-1-opus
> Detailed strategic analysis...
> /provider ollama
> /model gpt-oss
> Continue with local processing...
```
### Multi-Provider Workflow
```bash
# Start with local reasoning (default, no API key)
mcp-cli chat --server sqlite
# Compare responses across providers
> /provider ollama
> What's the best way to optimize this SQL query?
> /provider openai gpt-5 # Requires API key
> What's the best way to optimize this SQL query?
> /provider anthropic claude-4-sonnet # Requires API key
> What's the best way to optimize this SQL query?
# Use each provider's strengths
> /provider ollama gpt-oss # Local reasoning, privacy
> /provider openai gpt-5 # Advanced reasoning
> /provider anthropic claude-4-1-opus # Deep analysis
> /provider groq llama-3.1-70b # Ultra-fast responses
```
### Complex Tool Workflows with Reasoning
```bash
# Use reasoning model for complex database tasks
> /model gpt-oss
> I need to analyze our database performance. Think through what we should check first.
[gpt-oss shows thinking: "First, I should check the table structure, then indexes, then query patterns..."]
[Tool: list_tables] → products, customers, orders
> Now analyze the indexes and suggest optimizations
[gpt-oss thinks through index analysis]
[Tool: describe_table] → Shows current indexes
[Tool: read_query] → Analyzes query patterns
> Create an optimization plan based on your analysis
[Complete reasoning process followed by specific recommendations]
```
### Automation and Scripting
```bash
# Batch processing with different models
for file in data/*.csv; do
# Use reasoning model for analysis
mcp-cli cmd --server sqlite \
--model gpt-oss \
--prompt "Analyze this data and think through patterns" \
--input "$file" \
--output "analysis/$(basename "$file" .csv)_reasoning.txt"
# Use coding model for generating scripts
mcp-cli cmd --server sqlite \
--model qwen2.5-coder \
--prompt "Generate Python code to process this data" \
--input "$file" \
--output "scripts/$(basename "$file" .csv)_script.py"
done
# Pipeline with reasoning
cat complex_problem.txt | \
mcp-cli cmd --model gpt-oss --prompt "Think through this step by step" --input - | \
mcp-cli cmd --model llama3.3 --prompt "Summarize the key points" --input - > solution.txt
```
### Performance Monitoring
```bash
# Check provider and model performance
> /provider diagnostic
Provider Diagnostics
Provider | Status | Response Time | Features | Models
ollama | ✅ Ready | 56ms | 📡🔧 | gpt-oss, llama3.3, qwen3, ...
openai | ✅ Ready | 234ms | 📡🔧👁️ | gpt-5, gpt-4o, o3, ...
anthropic | ✅ Ready | 187ms | 📡🔧 | claude-4-1-opus, claude-4-sonnet, ...
azure_openai | ✅ Ready | 198ms | 📡🔧👁️ | gpt-5, gpt-4o, ...
gemini | ✅ Ready | 156ms | 📡🔧👁️ | gemini-2.0-flash, ...
groq | ✅ Ready | 45ms | 📡🔧 | llama-3.1-70b, ...
# Check available models
> /models
Models for ollama (Current Provider)
Model | Status
gpt-oss | Current & Default (Reasoning)
llama3.3 | Available
llama3.2 | Available
qwen2.5-coder | Available
deepseek-coder | Available
granite3.3 | Available
... and 6 more
# Monitor tool execution with reasoning
> /verbose
> /model gpt-oss
> Analyze the database and optimize the slowest queries
[Shows complete thinking process]
[Tool execution with timing]
```
## 🔍 Troubleshooting
### Common Issues
1. **Ollama not running** (default provider):
```bash
# Start Ollama service
ollama serve
# Or check if it's running
curl http://localhost:11434/api/tags
```
2. **Model not found**:
```bash
# For Ollama (default), pull the model first
ollama pull gpt-oss # Reasoning model
ollama pull llama3.3 # Latest Llama
ollama pull qwen2.5-coder # Coding model
# List available models
ollama list
# For cloud providers, check supported models
mcp-cli models openai # Shows GPT-5, GPT-4, O3 models
mcp-cli models anthropic # Shows Claude 4, Claude 3.5 models
```
3. **Provider not found or API key missing**:
```bash
# Check available providers
mcp-cli provider list
# For cloud providers, set API keys
mcp-cli provider set openai api_key sk-your-key
mcp-cli provider set anthropic api_key sk-ant-your-key
# Test connection
mcp-cli provider diagnostic openai
```
4. **Connection issues with Ollama**:
```bash
# Check Ollama is running
ollama list
# Test connection
mcp-cli provider diagnostic ollama
# Configure custom endpoint if needed
mcp-cli provider set ollama api_base http://localhost:11434
```
### Debug Mode
Enable verbose logging for troubleshooting:
```bash
mcp-cli --verbose chat --server sqlite
mcp-cli --log-level DEBUG interactive --server sqlite
```
## 🔒 Security Considerations
- **Local by Default**: Ollama with gpt-oss runs locally, keeping your data private
- **API Keys**: Only needed for cloud providers (OpenAI, Anthropic, etc.), stored securely
- **File Access**: Filesystem access can be disabled with `--disable-filesystem`
- **Tool Validation**: All tool calls are validated before execution
- **Timeout Protection**: Configurable timeouts prevent hanging operations
- **Server Isolation**: Each server runs in its own process
## 🚀 Performance Features
- **Local Processing**: Default Ollama provider minimizes latency
- **Reasoning Visibility**: See AI thinking process with gpt-oss, GPT-5, Claude 4
- **Concurrent Tool Execution**: Multiple tools can run simultaneously
- **Streaming Responses**: Real-time response generation
- **Connection Pooling**: Efficient reuse of client connections
- **Caching**: Tool metadata and provider configurations are cached
- **Async Architecture**: Non-blocking operations throughout
## 📦 Dependencies
Core dependencies are organized into feature groups:
- **cli**: Terminal UI and command framework (Rich, Typer, chuk-term)
- **dev**: Development tools, testing utilities, linting
- **chuk-tool-processor**: Core tool execution and MCP communication
- **chuk-llm**: Unified LLM provider management with 200+ auto-generated functions
- **chuk-term**: Enhanced terminal UI with themes, prompts, and cross-platform support
Install with specific features:
```bash
pip install "mcp-cli[cli]" # Basic CLI features
pip install "mcp-cli[cli,dev]" # CLI with development tools
```
## 🤝 Contributing
We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details.
### Development Setup
```bash
git clone https://github.com/chrishayuk/mcp-cli
cd mcp-cli
pip install -e ".[cli,dev]"
pre-commit install
```
### UI Demo Scripts
Explore the UI capabilities powered by chuk-term:
```bash
# Terminal management features
uv run examples/ui_terminal_demo.py
# Output system with themes
uv run examples/ui_output_demo.py
# Streaming UI capabilities
uv run examples/ui_streaming_demo.py
```
### Running Tests
```bash
pytest
pytest --cov=mcp_cli --cov-report=html
```
## 📜 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
- **[CHUK Tool Processor](https://github.com/chrishayuk/chuk-tool-processor)** - Async-native tool execution
- **[CHUK-LLM](https://github.com/chrishayuk/chuk-llm)** - Unified LLM provider management with GPT-5, Claude 4, and reasoning model support
- **[CHUK-Term](https://github.com/chrishayuk/chuk-term)** - Enhanced terminal UI with themes and cross-platform support
- **[Rich](https://github.com/Textualize/rich)** - Beautiful terminal formatting
- **[Typer](https://typer.tiangolo.com/)** - CLI framework
- **[Prompt Toolkit](https://github.com/prompt-toolkit/python-prompt-toolkit)** - Interactive input
## 🔗 Related Projects
- **[Model Context Protocol](https://modelcontextprotocol.io/)** - Core protocol specification
- **[MCP Servers](https://github.com/modelcontextprotocol/servers)** - Official MCP server implementations
- **[CHUK Tool Processor](https://github.com/chrishayuk/chuk-tool-processor)** - Tool execution engine
- **[CHUK-LLM](https://github.com/chrishayuk/chuk-llm)** - LLM provider abstraction with GPT-5, Claude 4, O3 series support
- **[CHUK-Term](https://github.com/chrishayuk/chuk-term)** - Terminal UI library with themes and cross-platform support", Assign "at most 3 tags" to the expected json: {"id":"14184","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"