AI prompts
base on A collection of projects showcasing RAG, agents, workflows, and other AI use cases # Awesome AI Apps [](https://awesome.re)

This repository is a comprehensive collection of practical examples, tutorials, and recipes for building powerful LLM-powered applications. From simple chatbots to advanced AI agents, these projects serve as a guide for developers working with various AI frameworks and tools.
Powered by [Nebius AI Studio](https://dub.sh/nebius) - your one-stop platform for building and deploying AI applications.
## π Featured AI Agent Frameworks
- [<img src="https://raw.githubusercontent.com/google/adk-python/main/assets/agent-development-kit.png" alt="Google ADK logo" width="20" height="20"> Google Agent Development Kit (ADK)](https://google.github.io/adk-docs/)
- [<img src="https://avatars.githubusercontent.com/u/14957082?s=200&v=4" alt="OpenAI Agents SDK logo" width="20" height="20"> OpenAI Agents SDK](https://openai.github.io/openai-agents-python/)
- [<img src="https://cdn.simpleicons.org/langchain" alt="LangChain logo" width="25" height="25"> LangChain ](https://python.langchain.com/)
- [<img src="https://avatars.githubusercontent.com/u/130722866?s=200&v=4" alt="Llamaindex logo" width="20" height="20"> LlamaIndex](https://www.llamaindex.ai/)
- [<img src="https://avatars.githubusercontent.com/u/104874993?s=48&v=4" alt="Agno logo" width="20" height="20"> Agno](https://www.agno.com/)
- [<img src="https://cdn.prod.website-files.com/66cf2bfc3ed15b02da0ca770/66d07240057721394308addd_Logo%20(1).svg" alt="CrewAI logo" width="35" height="25"> CrewAI](https://www.crewai.com/)
- [<img src="https://avatars.githubusercontent.com/u/209155962?s=200&v=4" alt="AWS Strands Agents logo" width="20" height="20"> AWS Strands Agent](https://strandsagents.com/)
- [<img src="https://avatars.githubusercontent.com/u/110818415?s=200&v=4" alt="Pydantic AI logo" width="20" height="20"> Pydantic AI](https://ai.pydantic.dev/)
- [<img src="https://avatars.githubusercontent.com/u/134388954?s=200&v=4" alt="Camel AI logo" width="20" height="20"> CAMELβAI](https://www.camel-ai.org/)
- [<img src="assets/DSPy.png" alt="DSPy logo" width="20" height="20"> DSPy](https://dspy.ai/)
## π§© Starter Agents
**Quick-start agents for learning and extending:**
- [Agno HackerNews Analysis](starter_ai_agents/agno_starter) - Agno-based agent for trend analysis on HackerNews.
- [OpenAI SDK Starter](starter_ai_agents/openai_agents_sdk) - OpenAI Agents SDK based email helper & haiku writer.
- [LlamaIndex Task Manager](starter_ai_agents/llamaindex_starter) - LlamaIndex-powered task assistant.
- [CrewAI Research Crew](starter_ai_agents/crewai_starter) - Multi-agent research team.
- [PydanticAI Weather Bot](starter_ai_agents/pydantic_starter) - Real-time weather info.
- [LangChain-LangGraph Starter](starter_ai_agents/langchain_langgraph_starter) - LangChain + LangGraph starter.
- [AWS Strands Agent Starter](starter_ai_agents/aws_strands_starter) - Weather report Agent.
- [Camel AI Starter](starter_ai_agents/camel_ai_starter) - Performance benchmarking tool that compares the performance of various AI models.
## πͺΆ Simple Agents
**Straightforward, practical use-cases:**
- [Finance Agent](simple_ai_agents/finance_agent) - Tracks live stock & market data.
- [Human-in-the-Loop Agent](simple_ai_agents/human_in_the_loop_agent) - HITL actions for safe AI tasks.
- [Newsletter Generator](simple_ai_agents/newsletter_agent) - AI newsletter builder with Firecrawl.
- [Reasoning Agent](simple_ai_agents/reasoning_agent) - Financial reasoning step-by-step.
- [Agno UI Example](simple_ai_agents/agno_ui_agent) - UI for web & finance agents.
- [Mastra Weather Bot](simple_ai_agents/mastra_ai_weather_agent) - Weather updates with Mastra AI.
- [Calendar Assistant](simple_ai_agents/cal_scheduling_agent) - Calendar scheduling with Cal.com.
- [Web Automation Agent](simple_ai_agents/browser_agent) - Simple Browser Agent implementation with Nebius & browser use.
- [Nebius Chat](simple_ai_agents/nebius_chat) - Nebius AI Studio Chat interface.
- [Talk to Your DB](simple_ai_agents/talk_to_db) - Talk to your Database with GibsonAI & Langchain
## ποΈ MCP Agents
**Examples using Model Context Protocol:**
- [Doc-MCP](mcp_ai_agents/doc_mcp) - Semantic RAG docs & Q\&A.
- [LangGraph MCP Agent](mcp_ai_agents/langchain_langgraph_mcp_agent) - LangChain ReAct agent with Couchbase.
- [GitHub MCP Agent](mcp_ai_agents/github_mcp_agent) - Repo insights via MCP.
- [MCP Starter](mcp_ai_agents/mcp_starter) - GitHub repo analyzer starter.
- [Talk to your Docs](mcp_ai_agents/docs_qna_agent) - Documentation QnA Agent
- [Database MCP Agent](mcp_ai_agents/database_mcp_agent) - A conversational AI agent for managing GibsonAI database projects and schemas.
## π§ Memory Agents
**Agents with advanced memory capabilities:**
- [Agno Memory Agent](memory_agents/agno_memory_agent) - Agno-based agent with persistent memory.
- [arXiv Researcher Agent with Memori](memory_agents/arxiv_researcher_agent_with_memori) - Research assistant using OpenAI Agents and GibsonAI Memori.
- [AWS Strands Agent with Memori](memory_agents/aws_strands_agent_with_memori) - AWS Strands agent enhanced with Memori memory.
- [Blog Writing Agent](memory_agents/blog_writing_agent) - Personalized blog writing agent with memory.
- [Social Media Agent](memory_agents/social_media_agent) - Social media automation agent with memory.
## π RAG Applications
**Retrieve-augmented generation examples:**
- [Agentic RAG](rag_apps/agentic_rag) - Agentic RAG with Agno & GPT 5.
- [Agentic RAG with Web Search](rag_apps/agentic_rag_with_web_search) - Advanced RAG with CrewAI, Qdrant, and Exa for hybrid search.
- [Resume Optimizer](rag_apps/resume_optimizer) - Boost resumes with AI.
- [LlamaIndex RAG Starter](rag_apps/llamaIndex_starter) - LlamaIndex + Nebius RAG starter.
- [PDF RAG Analyzer](rag_apps/pdf_rag_analyser) - Chat with multiple PDFs.
- [Qwen3 RAG Chat](rag_apps/qwen3_rag) - PDF chatbot with Streamlit.
- [Chat with Code](rag_apps/chat_with_code) - Conversational code explorer.
- [Gemma3 OCR](rag_apps/gemma_ocr/) - OCR-based document and image processor using Gemma3
- [Contextual AI RAG](rag_apps/contextual_ai_rag) - Enterprise-level RAG with managed datastores and quality evaluation.
## π¬ Advanced Agents
**Complex pipelines for end-to-end workflows:**
- [Deep Researcher](advance_ai_agents/deep_researcher_agent) - Multi-stage research with Agno & Scrapegraph AI.
- [Candilyzer](advance_ai_agents/candidate_analyser) - Analyze GitHub/LinkedIn profiles.
- [Job Finder](advance_ai_agents/job_finder_agent) - LinkedIn job search with Bright Data.
- [AI Trend Analyzer](advance_ai_agents/trend_analyzer_agent) - AI trend mining with Google ADK.
- [Conference Talk Generator](advance_ai_agents/conference_talk_abstract_generator) - Draft talk abstracts with Google ADK & Couchbase.
- [Finance Service Agent](advance_ai_agents/finance_service_agent) - FastAPI server for stock data and predictions with Agno.
- [Price Monitoring Agent](advance_ai_agents/price_monitoring_agent) - Price monitoring and alerting Agent powered by CrewAi, Twilio & Nebius.
- [Startup Idea Validator Agent](advance_ai_agents/startup_idea_validator_agent) - Agentic Workflow to validate and analyze startup ideas.
- [Meeting Assistant Agent](advance_ai_agents/meeting_assistant_agent) - Agentic Workflow that send meeting notes and creates task based on conversation.
## πΊ Playlist of Demo Videos & Tutorials
- [Build with MCP](https://www.youtube.com/playlist?list=PLMZM1DAlf0Lolxax4L2HS54Me8gn1gkz4)
- [Build AI Agents](https://www.youtube.com/playlist?list=PLMZM1DAlf0LqixhAG9BDk4O_FjqnaogK8)
- [AI Agents, MCP and more...](https://www.youtube.com/playlist?list=PL2ambAOfYA6-LDz0KpVKu9vJKAqhv0KKI)
## Getting Started
### Prerequisites
- Python 3.10 or higher
- Git
- pip (Python package manager) or uv
### Installation Steps
1. **Clone the repository**
```bash
git clone https://github.com/Arindam200/awesome-ai-apps.git
```
2. **Navigate to the desired project directory**
```bash
cd awesome-ai-apps/starter_ai_agents/agno_starter
```
3. **Install the required dependencies**
```bash
pip install -r requirements.txt
```
4. **Follow project-specific instructions**
- Each project has its own README.md with detailed setup and usage instructions
- Make sure to read the project-specific documentation before running the application
## π€ Contributing
We welcome contributions from the community! If you'd like to contribute, please see our [Contributing Guidelines](CONTRIBUTING.md) for more information on how to get started.
Please note that this project is released with a [Contributor Code of Conduct](CODE_OF_CONDUCT.md). By participating in this project you agree to abide by its terms.
## π License
This repository is licensed under the [MIT License](./LICENSE). Feel free to use and modify the examples for your projects.
## Thank You for the Support! π
[](https://www.star-history.com/#Arindam200/awesome-ai-apps&Date)
", Assign "at most 3 tags" to the expected json: {"id":"14662","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"