base on [ICCV 2023] ProPainter: Improving Propagation and Transformer for Video Inpainting <div align="center"> <div class="logo"> <a href="https://shangchenzhou.com/projects/ProPainter/"> <img src="assets/propainter_logo1_glow.png" style="width: 180px"> </a> </div> <h1>ProPainter: Improving Propagation and Transformer for Video Inpainting</h1> <div> <a href='https://shangchenzhou.com/' target='_blank'>Shangchen Zhou</a>&emsp; <a href='https://li-chongyi.github.io/' target='_blank'>Chongyi Li</a>&emsp; <a href='https://ckkelvinchan.github.io/' target='_blank'>Kelvin C.K. Chan</a>&emsp; <a href='https://www.mmlab-ntu.com/person/ccloy/' target='_blank'>Chen Change Loy</a> </div> <div> S-Lab, Nanyang Technological University&emsp; </div> <div> <strong>ICCV 2023</strong> </div> <div> <h4 align="center"> <a href="https://shangchenzhou.com/projects/ProPainter" target='_blank'> <img src="https://img.shields.io/badge/🐳-Project%20Page-blue"> </a> <a href="https://arxiv.org/abs/2309.03897" target='_blank'> <img src="https://img.shields.io/badge/arXiv-2309.03897-b31b1b.svg"> </a> <a href="https://youtu.be/92EHfgCO5-Q" target='_blank'> <img src="https://img.shields.io/badge/Demo%20Video-%23FF0000.svg?logo=YouTube&logoColor=white"> </a> <a href="https://huggingface.co/spaces/sczhou/ProPainter" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-blue"> </a> <a href="https://openxlab.org.cn/apps/detail/ShangchenZhou/ProPainter" target='_blank'> <img src="https://img.shields.io/badge/Demo-%F0%9F%91%A8%E2%80%8D%F0%9F%8E%A8%20OpenXLab-blue"> </a> <img src="https://api.infinitescript.com/badgen/count?name=sczhou/ProPainter"> </h4> </div> ⭐ If ProPainter is helpful to your projects, please help star this repo. Thanks! šŸ¤— :open_book: For more visual results, go checkout our <a href="https://shangchenzhou.com/projects/ProPainter/" target="_blank">project page</a> --- </div> ## Update - **2023.11.09**: Integrated to :man_artist: [OpenXLab](https://openxlab.org.cn/apps). Try out online demo! [![OpenXLab](https://img.shields.io/badge/Demo-%F0%9F%91%A8%E2%80%8D%F0%9F%8E%A8%20OpenXLab-blue)](https://openxlab.org.cn/apps/detail/ShangchenZhou/ProPainter) - **2023.11.09**: Integrated to :hugs: [Hugging Face](https://huggingface.co/spaces). Try out online demo! [![Hugging Face](https://img.shields.io/badge/Demo-%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/sczhou/ProPainter) - **2023.09.24**: We remove the watermark removal demos officially to prevent the misuse of our work for unethical purposes. - **2023.09.21**: Add features for memory-efficient inference. Check our [GPU memory](https://github.com/sczhou/ProPainter#-memory-efficient-inference) requirements. šŸš€ - **2023.09.07**: Our code and model are publicly available. 🐳 - **2023.09.01**: This repo is created. ### TODO - [ ] Make a Colab demo. - [x] ~~Make a interactive Gradio demo.~~ - [x] ~~Update features for memory-efficient inference.~~ ## Results #### šŸ‘ØšŸ»ā€šŸŽØ Object Removal <table> <tr> <td> <img src="assets/object_removal1.gif"> </td> <td> <img src="assets/object_removal2.gif"> </td> </tr> </table> #### šŸŽØ Video Completion <table> <tr> <td> <img src="assets/video_completion1.gif"> </td> <td> <img src="assets/video_completion2.gif"> </td> </tr> <tr> <td> <img src="assets/video_completion3.gif"> </td> <td> <img src="assets/video_completion4.gif"> </td> </tr> </table> ## Overview ![overall_structure](assets/ProPainter_pipeline.png) ## Dependencies and Installation 1. Clone Repo ```bash git clone https://github.com/sczhou/ProPainter.git ``` 2. Create Conda Environment and Install Dependencies ```bash # create new anaconda env conda create -n propainter python=3.8 -y conda activate propainter # install python dependencies pip3 install -r requirements.txt ``` - CUDA >= 9.2 - PyTorch >= 1.7.1 - Torchvision >= 0.8.2 - Other required packages in `requirements.txt` ## Get Started ### Prepare pretrained models Download our pretrained models from [Releases V0.1.0](https://github.com/sczhou/ProPainter/releases/tag/v0.1.0) to the `weights` folder. (All pretrained models can also be automatically downloaded during the first inference.) The directory structure will be arranged as: ``` weights |- ProPainter.pth |- recurrent_flow_completion.pth |- raft-things.pth |- i3d_rgb_imagenet.pt (for evaluating VFID metric) |- README.md ``` ### šŸ‚ Quick test We provide some examples in the [`inputs`](./inputs) folder. Run the following commands to try it out: ```shell # The first example (object removal) python inference_propainter.py --video inputs/object_removal/bmx-trees --mask inputs/object_removal/bmx-trees_mask # The second example (video completion) python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 240 --width 432 ``` The results will be saved in the `results` folder. To test your own videos, please prepare the input `mp4 video` (or `split frames`) and `frame-wise mask(s)`. If you want to specify the video resolution for processing or avoid running out of memory, you can set the video size of `--width` and `--height`: ```shell # process a 576x320 video; set --fp16 to use fp16 (half precision) during inference. python inference_propainter.py --video inputs/video_completion/running_car.mp4 --mask inputs/video_completion/mask_square.png --height 320 --width 576 --fp16 ``` #### šŸ’ƒšŸ» Interactive Demo We also provide an interactive demo for object removal, allowing users to select any object they wish to remove from a video. You can try the demo on [Hugging Face](https://huggingface.co/spaces/sczhou/ProPainter) or run it [locally](https://github.com/sczhou/ProPainter/tree/main/web-demos/hugging_face). <div align="center"> <img src="./web-demos/hugging_face/assets/demo.gif" alt="Demo GIF" style="max-width: 512px; height: auto;"> </div> *Please note that the demo's interface and usage may differ from the GIF animation above. For detailed instructions, refer to the [user guide](https://github.com/sczhou/ProPainter/blob/main/web-demos/hugging_face/README.md).* ### šŸš€ Memory-efficient inference Video inpainting typically requires a significant amount of GPU memory. Here, we offer various features that facilitate memory-efficient inference, effectively avoiding the Out-Of-Memory (OOM) error. You can use the following options to reduce memory usage further: - Reduce the number of local neighbors through decreasing the `--neighbor_length` (default 10). - Reduce the number of global references by increasing the `--ref_stride` (default 10). - Set the `--resize_ratio` (default 1.0) to resize the processing video. - Set a smaller video size via specifying the `--width` and `--height`. - Set `--fp16` to use fp16 (half precision) during inference. - Reduce the frames of sub-videos `--subvideo_length` (default 80), which effectively decouples GPU memory costs and video length. Blow shows the estimated GPU memory requirements for different sub-video lengths with fp32/fp16 precision: | Resolution | 50 frames | 80 frames | | :--- | :----: | :----: | | 1280 x 720 | 28G / 19G | OOM / 25G | | 720 x 480 | 11G / 7G | 13G / 8G | | 640 x 480 | 10G / 6G | 12G / 7G | | 320 x 240 | 3G / 2G | 4G / 3G | ## Dataset preparation <table> <thead> <tr> <th>Dataset</th> <th>YouTube-VOS</th> <th>DAVIS</th> </tr> </thead> <tbody> <tr> <td>Description</td> <td>For training (3,471) and evaluation (508)</td> <td>For evaluation (50 in 90)</td> <tr> <td>Images</td> <td> [<a href="https://competitions.codalab.org/competitions/19544#participate-get-data">Official Link</a>] (Download train and test all frames) </td> <td> [<a href="https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-trainval-480p.zip">Official Link</a>] (2017, 480p, TrainVal) </td> </tr> <tr> <td>Masks</td> <td colspan="2"> [<a href="https://drive.google.com/file/d/1dFTneS_zaJAHjglxU10gYzr1-xALgHa4/view?usp=sharing">Google Drive</a>] [<a href="https://pan.baidu.com/s/1JC-UKmlQfjhVtD81196cxA?pwd=87e3">Baidu Disk</a>] (For reproducing paper results; provided in <a href="https://arxiv.org/abs/2309.03897">ProPainter</a> paper) </td> </tr> </tbody> </table> The training and test split files are provided in `datasets/<dataset_name>`. For each dataset, you should place `JPEGImages` to `datasets/<dataset_name>`. Resize all video frames to size `432x240` for training. Unzip downloaded mask files to `datasets`. The `datasets` directory structure will be arranged as: (**Note**: please check it carefully) ``` datasets |- davis |- JPEGImages_432_240 |- <video_name> |- 00000.jpg |- 00001.jpg |- test_masks |- <video_name> |- 00000.png |- 00001.png |- train.json |- test.json |- youtube-vos |- JPEGImages_432_240 |- <video_name> |- 00000.jpg |- 00001.jpg |- test_masks |- <video_name> |- 00000.png |- 00001.png |- train.json |- test.json ``` ## Training Our training configures are provided in [`train_flowcomp.json`](./configs/train_flowcomp.json) (for Recurrent Flow Completion Network) and [`train_propainter.json`](./configs/train_propainter.json) (for ProPainter). Run one of the following commands for training: ```shell # For training Recurrent Flow Completion Network python train.py -c configs/train_flowcomp.json # For training ProPainter python train.py -c configs/train_propainter.json ``` You can run the **same command** to **resume** your training. To speed up the training process, you can precompute optical flow for the training dataset using the following command: ```shell # Compute optical flow for training dataset python scripts/compute_flow.py --root_path <dataset_root> --save_path <save_flow_root> --height 240 --width 432 ``` ## Evaluation Run one of the following commands for evaluation: ```shell # For evaluating flow completion model python scripts/evaluate_flow_completion.py --dataset <dataset_name> --video_root <video_root> --mask_root <mask_root> --save_results # For evaluating ProPainter model python scripts/evaluate_propainter.py --dataset <dataset_name> --video_root <video_root> --mask_root <mask_root> --save_results ``` The scores and results will also be saved in the `results_eval` folder. Please `--save_results` for further [evaluating temporal warping error](https://github.com/phoenix104104/fast_blind_video_consistency#evaluation). ## Citation If you find our repo useful for your research, please consider citing our paper: ```bibtex @inproceedings{zhou2023propainter, title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting}, author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change}, booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)}, year={2023} } ``` ## License #### Non-Commercial Use Only Declaration The ProPainter is made available for use, reproduction, and distribution strictly for non-commercial purposes. The code and models are licensed under <a rel="license" href="./LICENSE">NTU S-Lab License 1.0</a>. Redistribution and use should follow this license. For inquiries or to obtain permission for commercial use, please consult Dr. Shangchen Zhou ([email protected]). ## Projects that use ProPainter If you develop or use ProPainter in your projects, feel free to let me know. Also, please include this [ProPainter](https://github.com/sczhou/ProPainter) repo link, authorship information, and our [S-Lab license](https://github.com/sczhou/ProPainter/blob/main/LICENSE) (with link). #### Projects/Applications from the Community - Streaming ProPainter: https://github.com/osmr/propainter - Faster ProPainter: https://github.com/halfzm/faster-propainter - ProPainter WebUI: https://github.com/halfzm/ProPainter-Webui - ProPainter ComfyUI: https://github.com/daniabib/ComfyUI_ProPainter_Nodes - Cutie (video segmentation): https://github.com/hkchengrex/Cutie - Cinetransfer (character transfer): https://virtualfilmstudio.github.io/projects/cinetransfer - Motionshop (character transfer): https://aigc3d.github.io/motionshop #### PyPI - propainter: https://pypi.org/project/propainter - pytorchcv: https://pypi.org/project/pytorchcv ## Contact If you have any questions, please feel free to reach me out at [email protected]. ## Acknowledgement This code is based on [E<sup>2</sup>FGVI](https://github.com/MCG-NKU/E2FGVI) and [STTN](https://github.com/researchmm/STTN). Some code are brought from [BasicVSR++](https://github.com/ckkelvinchan/BasicVSR_PlusPlus). Thanks for their awesome works. Special thanks to [Yihang Luo](https://github.com/Luo-Yihang) for his valuable contributions to build and maintain the Gradio demos for ProPainter. ", Assign "at most 3 tags" to the expected json: {"id":"1519","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"