base on A comprehensive guide to building RAG-based LLM applications for production. # LLM Applications
A comprehensive guide to building RAG-based LLM applications for production.
- **Blog post**: https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
- **GitHub repository**: https://github.com/ray-project/llm-applications
- **Interactive notebook**: https://github.com/ray-project/llm-applications/blob/main/notebooks/rag.ipynb
- **Anyscale Endpoints**: https://endpoints.anyscale.com/
- **Ray documentation**: https://docs.ray.io/
In this guide, we will learn how to:
- 💻 Develop a retrieval augmented generation (RAG) based LLM application from scratch.
- 🚀 Scale the major components (load, chunk, embed, index, serve, etc.) in our application.
- ✅ Evaluate different configurations of our application to optimize for both per-component (ex. retrieval_score) and overall performance (quality_score).
- 🔀 Implement LLM hybrid routing approach to bridge the gap b/w OSS and closed LLMs.
- 📦 Serve the application in a highly scalable and available manner.
- 💥 Share the 1st order and 2nd order impacts LLM applications have had on our products.
<br>
<img width="800" src="https://images.ctfassets.net/xjan103pcp94/7FWrvPPlIdz5fs8wQgxLFz/fdae368044275028f0544a3d252fcfe4/image15.png">
## Setup
### API keys
We'll be using [OpenAI](https://platform.openai.com/docs/models/) to access ChatGPT models like `gpt-3.5-turbo`, `gpt-4`, etc. and [Anyscale Endpoints](https://endpoints.anyscale.com/) to access OSS LLMs like `Llama-2-70b`. Be sure to create your accounts for both and have your credentials ready.
### Compute
<details>
<summary>Local</summary>
You could run this on your local laptop but a we highly recommend using a setup with access to GPUs. You can set this up on your own or on [Anyscale](http://anyscale.com/).
</details>
<details open>
<summary>Anyscale</summary><br>
<ul>
<li>Start a new <a href="https://console.anyscale-staging.com/o/anyscale-internal/workspaces">Anyscale workspace on staging</a> using an <a href="https://instances.vantage.sh/aws/ec2/g3.8xlarge"><code>g3.8xlarge</code></a> head node, which has 2 GPUs and 32 CPUs. We can also add GPU worker nodes to run the workloads faster. If you're not on Anyscale, you can configure a similar instance on your cloud.</li>
<li>Use the <a href="https://docs.anyscale.com/reference/base-images/ray-262/py39#ray-2-6-2-py39"><code>default_cluster_env_2.6.2_py39</code></a> cluster environment.</li>
<li>Use the <code>us-west-2</code> if you'd like to use the artifacts in our shared storage (source docs, vector DB dumps, etc.).</li>
</ul>
</details>
### Repository
```bash
git clone https://github.com/ray-project/llm-applications.git .
git config --global user.name <GITHUB-USERNAME>
git config --global user.email <EMAIL-ADDRESS>
```
### Data
Our data is already ready at `/efs/shared_storage/goku/docs.ray.io/en/master/` (on Staging, `us-east-1`) but if you wanted to load it yourself, run this bash command (change `/desired/output/directory`, but make sure it's on the shared storage,
so that it's accessible to the workers)
```bash
git clone https://github.com/ray-project/llm-applications.git .
```
### Environment
Then set up the environment correctly by specifying the values in your `.env` file,
and installing the dependencies:
```bash
pip install --user -r requirements.txt
export PYTHONPATH=$PYTHONPATH:$PWD
pre-commit install
pre-commit autoupdate
```
### Credentials
```bash
touch .env
# Add environment variables to .env
OPENAI_API_BASE="https://api.openai.com/v1"
OPENAI_API_KEY="" # https://platform.openai.com/account/api-keys
ANYSCALE_API_BASE="https://api.endpoints.anyscale.com/v1"
ANYSCALE_API_KEY="" # https://app.endpoints.anyscale.com/credentials
DB_CONNECTION_STRING="dbname=postgres user=postgres host=localhost password=postgres"
source .env
```
Now we're ready to go through the [rag.ipynb](notebooks/rag.ipynb) interactive notebook to develop and serve our LLM application!
### Learn more
- If your team is investing heavily in developing LLM applications, [reach out](mailto:
[email protected]) to us to learn more about how [Ray](https://github.com/ray-project/ray) and [Anyscale](http://anyscale.com/) can help you scale and productionize everything.
- Start serving (+fine-tuning) OSS LLMs with [Anyscale Endpoints](https://endpoints.anyscale.com/) ($1/M tokens for `Llama-3-70b`) and private endpoints available upon request (1M free tokens trial).
- Learn more about how companies like OpenAI, Netflix, Pinterest, Verizon, Instacart and others leverage Ray and Anyscale for their AI workloads at the [Ray Summit 2024](https://raysummit.anyscale.com/) this Sept 18-20 in San Francisco.
", Assign "at most 3 tags" to the expected json: {"id":"1611","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"