AI prompts
base on Java interface to OpenCV, FFmpeg, and more JavaCV
======
[![Gitter](https://badges.gitter.im/bytedeco/javacv.svg)](https://gitter.im/bytedeco/javacv) [![Maven Central](https://maven-badges.herokuapp.com/maven-central/org.bytedeco/javacv-platform/badge.svg)](https://maven-badges.herokuapp.com/maven-central/org.bytedeco/javacv-platform) [![Sonatype Nexus (Snapshots)](https://img.shields.io/nexus/s/https/oss.sonatype.org/org.bytedeco/javacv.svg)](http://bytedeco.org/builds/) [![Build Status](https://travis-ci.org/bytedeco/javacv.svg?branch=master)](https://travis-ci.org/bytedeco/javacv) <sup>Commercial support:</sup> [![xscode](https://img.shields.io/badge/Available%20on-xs%3Acode-blue?style=?style=plastic&logo=appveyor&logo=)](https://xscode.com/bytedeco/javacv)
Introduction
------------
JavaCV uses wrappers from the [JavaCPP Presets](https://github.com/bytedeco/javacpp-presets) of commonly used libraries by researchers in the field of computer vision ([OpenCV](http://opencv.org/), [FFmpeg](http://ffmpeg.org/), [libdc1394](http://damien.douxchamps.net/ieee1394/libdc1394/), [FlyCapture](https://www.flir.com/products/flycapture-sdk/), [Spinnaker](https://www.flir.com/products/spinnaker-sdk/), [OpenKinect](http://openkinect.org/), [librealsense](https://github.com/IntelRealSense/librealsense), [CL PS3 Eye Driver](https://codelaboratories.com/downloads/), [videoInput](http://muonics.net/school/spring05/videoInput/), [ARToolKitPlus](https://launchpad.net/artoolkitplus), [flandmark](https://github.com/uricamic/flandmark), [Leptonica](http://www.leptonica.org/), and [Tesseract](https://github.com/tesseract-ocr/tesseract)) and provides utility classes to make their functionality easier to use on the Java platform, including Android.
JavaCV also comes with hardware accelerated full-screen image display (`CanvasFrame` and `GLCanvasFrame`), easy-to-use methods to execute code in parallel on multiple cores (`Parallel`), user-friendly geometric and color calibration of cameras and projectors (`GeometricCalibrator`, `ProCamGeometricCalibrator`, `ProCamColorCalibrator`), detection and matching of feature points (`ObjectFinder`), a set of classes that implement direct image alignment of projector-camera systems (mainly `GNImageAligner`, `ProjectiveTransformer`, `ProjectiveColorTransformer`, `ProCamTransformer`, and `ReflectanceInitializer`), a blob analysis package (`Blobs`), as well as miscellaneous functionality in the `JavaCV` class. Some of these classes also have an OpenCL and OpenGL counterpart, their names ending with `CL` or starting with `GL`, i.e.: `JavaCVCL`, `GLCanvasFrame`, etc.
To learn how to use the API, since documentation currently lacks, please refer to the [Sample Usage](#sample-usage) section below as well as the [sample programs](https://github.com/bytedeco/javacv/tree/master/samples/), including two for Android (`FacePreview.java` and `RecordActivity.java`), also found in the `samples` directory. You may also find it useful to refer to the source code of [ProCamCalib](https://github.com/bytedeco/procamcalib) and [ProCamTracker](https://github.com/bytedeco/procamtracker) as well as [examples ported from OpenCV2 Cookbook](https://github.com/bytedeco/javacv-examples/) and the associated [wiki pages](https://github.com/bytedeco/javacv-examples/tree/master/OpenCV_Cookbook).
Please keep me informed of any updates or fixes you make to the code so that I may integrate them into the next release. Thank you! And feel free to ask questions on [the mailing list](http://groups.google.com/group/javacv) or [the discussion forum](https://github.com/bytedeco/javacv/discussions) if you encounter any problems with the software! I am sure it is far from perfect...
Downloads
---------
Archives containing JAR files are available as [releases](https://github.com/bytedeco/javacv/releases). The binary archive contains builds for Android, iOS, Linux, Mac OS X, and Windows. The JAR files for specific child modules or platforms can also be obtained individually from the [Maven Central Repository](http://search.maven.org/#search|ga|1|bytedeco).
To install manually the JAR files, follow the instructions in the [Manual Installation](#manual-installation) section below.
We can also have everything downloaded and installed automatically with:
* Maven (inside the `pom.xml` file)
```xml
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>javacv-platform</artifactId>
<version>1.5.11</version>
</dependency>
```
* Gradle (inside the `build.gradle.kts` or `build.gradle` file)
```groovy
dependencies {
implementation("org.bytedeco:javacv-platform:1.5.11")
}
```
* Leiningen (inside the `project.clj` file)
```clojure
:dependencies [
[org.bytedeco/javacv-platform "1.5.11"]
]
```
* sbt (inside the `build.sbt` file)
```scala
libraryDependencies += "org.bytedeco" % "javacv-platform" % "1.5.11"
```
This downloads binaries for all platforms, but to get binaries for only one platform we can set the `javacpp.platform` system property (via the `-D` command line option) to something like `android-arm`, `linux-x86_64`, `macosx-x86_64`, `windows-x86_64`, etc. Please refer to the [README.md file of the JavaCPP Presets](https://github.com/bytedeco/javacpp-presets#downloads) for details. Another option available to Gradle users is [Gradle JavaCPP](https://github.com/bytedeco/gradle-javacpp), and similarly for Scala users there is [SBT-JavaCV](https://github.com/bytedeco/sbt-javacv).
Required Software
-----------------
To use JavaCV, you will first need to download and install the following software:
* An implementation of Java SE 7 or newer:
* OpenJDK http://openjdk.java.net/install/ or
* Oracle JDK http://www.oracle.com/technetwork/java/javase/downloads/ or
* IBM JDK http://www.ibm.com/developerworks/java/jdk/
Further, although not always required, some functionality of JavaCV also relies on:
* CL Eye Platform SDK (Windows only) http://codelaboratories.com/downloads/
* Android SDK API 21 or newer http://developer.android.com/sdk/
* JOCL and JOGL from JogAmp http://jogamp.org/
Finally, please make sure everything has the same bitness: **32-bit and 64-bit modules do not mix under any circumstances**.
Manual Installation
-------------------
Simply put all the desired JAR files (`opencv*.jar`, `ffmpeg*.jar`, etc.), in addition to `javacpp.jar` and `javacv.jar`, somewhere in your class path. Here are some more specific instructions for common cases:
NetBeans (Java SE 7 or newer):
1. In the Projects window, right-click the Libraries node of your project, and select "Add JAR/Folder...".
2. Locate the JAR files, select them, and click OK.
Eclipse (Java SE 7 or newer):
1. Navigate to Project > Properties > Java Build Path > Libraries and click "Add External JARs...".
2. Locate the JAR files, select them, and click OK.
Visual Studio Code (Java SE 7 or newer):
1. Navigate to Java Projects > Referenced Libraries, and click `+`.
2. Locate the JAR files, select them, and click OK.
IntelliJ IDEA (Android 7.0 or newer):
1. Follow the instructions on this page: http://developer.android.com/training/basics/firstapp/
2. Copy all the JAR files into the `app/libs` subdirectory.
3. Navigate to File > Project Structure > app > Dependencies, click `+`, and select "2 File dependency".
4. Select all the JAR files from the `libs` subdirectory.
5. In the AndroidManifest.xml add `android:extractNativeLibs="true"`
After that, the wrapper classes for OpenCV and FFmpeg, for example, can automatically access all of their C/C++ APIs:
* [OpenCV documentation](http://docs.opencv.org/master/)
* [FFmpeg documentation](http://ffmpeg.org/doxygen/trunk/)
Sample Usage
------------
The class definitions are basically ports to Java of the original header files in C/C++, and I deliberately decided to keep as much of the original syntax as possible. For example, here is a method that tries to load an image file, smooth it, and save it back to disk:
```java
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;
public class Smoother {
public static void smooth(String filename) {
Mat image = imread(filename);
if (image != null) {
GaussianBlur(image, image, new Size(3, 3), 0);
imwrite(filename, image);
}
}
}
```
JavaCV also comes with helper classes and methods on top of OpenCV and FFmpeg to facilitate their integration to the Java platform. Here is a small demo program demonstrating the most frequently useful parts:
```java
import java.io.File;
import java.net.URL;
import org.bytedeco.javacv.*;
import org.bytedeco.javacpp.*;
import org.bytedeco.javacpp.indexer.*;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import org.bytedeco.opencv.opencv_calib3d.*;
import org.bytedeco.opencv.opencv_objdetect.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_calib3d.*;
import static org.bytedeco.opencv.global.opencv_objdetect.*;
public class Demo {
public static void main(String[] args) throws Exception {
String classifierName = null;
if (args.length > 0) {
classifierName = args[0];
} else {
URL url = new URL("https://raw.github.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_alt.xml");
File file = Loader.cacheResource(url);
classifierName = file.getAbsolutePath();
}
// We can "cast" Pointer objects by instantiating a new object of the desired class.
CascadeClassifier classifier = new CascadeClassifier(classifierName);
if (classifier == null) {
System.err.println("Error loading classifier file \"" + classifierName + "\".");
System.exit(1);
}
// The available FrameGrabber classes include OpenCVFrameGrabber (opencv_videoio),
// DC1394FrameGrabber, FlyCapture2FrameGrabber, OpenKinectFrameGrabber, OpenKinect2FrameGrabber,
// RealSenseFrameGrabber, RealSense2FrameGrabber, PS3EyeFrameGrabber, VideoInputFrameGrabber, and FFmpegFrameGrabber.
FrameGrabber grabber = FrameGrabber.createDefault(0);
grabber.start();
// CanvasFrame, FrameGrabber, and FrameRecorder use Frame objects to communicate image data.
// We need a FrameConverter to interface with other APIs (Android, Java 2D, JavaFX, Tesseract, OpenCV, etc).
OpenCVFrameConverter.ToMat converter = new OpenCVFrameConverter.ToMat();
// FAQ about IplImage and Mat objects from OpenCV:
// - For custom raw processing of data, createBuffer() returns an NIO direct
// buffer wrapped around the memory pointed by imageData, and under Android we can
// also use that Buffer with Bitmap.copyPixelsFromBuffer() and copyPixelsToBuffer().
// - To get a BufferedImage from an IplImage, or vice versa, we can chain calls to
// Java2DFrameConverter and OpenCVFrameConverter, one after the other.
// - Java2DFrameConverter also has static copy() methods that we can use to transfer
// data more directly between BufferedImage and IplImage or Mat via Frame objects.
Mat grabbedImage = converter.convert(grabber.grab());
int height = grabbedImage.rows();
int width = grabbedImage.cols();
// Objects allocated with `new`, clone(), or a create*() factory method are automatically released
// by the garbage collector, but may still be explicitly released by calling deallocate().
// You shall NOT call cvReleaseImage(), cvReleaseMemStorage(), etc. on objects allocated this way.
Mat grayImage = new Mat(height, width, CV_8UC1);
Mat rotatedImage = grabbedImage.clone();
// The OpenCVFrameRecorder class simply uses the VideoWriter of opencv_videoio,
// but FFmpegFrameRecorder also exists as a more versatile alternative.
FrameRecorder recorder = FrameRecorder.createDefault("output.avi", width, height);
recorder.start();
// CanvasFrame is a JFrame containing a Canvas component, which is hardware accelerated.
// It can also switch into full-screen mode when called with a screenNumber.
// We should also specify the relative monitor/camera response for proper gamma correction.
CanvasFrame frame = new CanvasFrame("Some Title", CanvasFrame.getDefaultGamma()/grabber.getGamma());
// Let's create some random 3D rotation...
Mat randomR = new Mat(3, 3, CV_64FC1),
randomAxis = new Mat(3, 1, CV_64FC1);
// We can easily and efficiently access the elements of matrices and images
// through an Indexer object with the set of get() and put() methods.
DoubleIndexer Ridx = randomR.createIndexer(),
axisIdx = randomAxis.createIndexer();
axisIdx.put(0, (Math.random() - 0.5) / 4,
(Math.random() - 0.5) / 4,
(Math.random() - 0.5) / 4);
Rodrigues(randomAxis, randomR);
double f = (width + height) / 2.0; Ridx.put(0, 2, Ridx.get(0, 2) * f);
Ridx.put(1, 2, Ridx.get(1, 2) * f);
Ridx.put(2, 0, Ridx.get(2, 0) / f); Ridx.put(2, 1, Ridx.get(2, 1) / f);
System.out.println(Ridx);
// We can allocate native arrays using constructors taking an integer as argument.
Point hatPoints = new Point(3);
while (frame.isVisible() && (grabbedImage = converter.convert(grabber.grab())) != null) {
// Let's try to detect some faces! but we need a grayscale image...
cvtColor(grabbedImage, grayImage, CV_BGR2GRAY);
RectVector faces = new RectVector();
classifier.detectMultiScale(grayImage, faces);
long total = faces.size();
for (long i = 0; i < total; i++) {
Rect r = faces.get(i);
int x = r.x(), y = r.y(), w = r.width(), h = r.height();
rectangle(grabbedImage, new Point(x, y), new Point(x + w, y + h), Scalar.RED, 1, CV_AA, 0);
// To access or pass as argument the elements of a native array, call position() before.
hatPoints.position(0).x(x - w / 10 ).y(y - h / 10);
hatPoints.position(1).x(x + w * 11 / 10).y(y - h / 10);
hatPoints.position(2).x(x + w / 2 ).y(y - h / 2 );
fillConvexPoly(grabbedImage, hatPoints.position(0), 3, Scalar.GREEN, CV_AA, 0);
}
// Let's find some contours! but first some thresholding...
threshold(grayImage, grayImage, 64, 255, CV_THRESH_BINARY);
// To check if an output argument is null we may call either isNull() or equals(null).
MatVector contours = new MatVector();
findContours(grayImage, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
long n = contours.size();
for (long i = 0; i < n; i++) {
Mat contour = contours.get(i);
Mat points = new Mat();
approxPolyDP(contour, points, arcLength(contour, true) * 0.02, true);
drawContours(grabbedImage, new MatVector(points), -1, Scalar.BLUE);
}
warpPerspective(grabbedImage, rotatedImage, randomR, rotatedImage.size());
Frame rotatedFrame = converter.convert(rotatedImage);
frame.showImage(rotatedFrame);
recorder.record(rotatedFrame);
}
frame.dispose();
recorder.stop();
grabber.stop();
}
}
```
Furthermore, after creating a `pom.xml` file with the following content:
```xml
<project>
<modelVersion>4.0.0</modelVersion>
<groupId>org.bytedeco.javacv</groupId>
<artifactId>demo</artifactId>
<version>1.5.11</version>
<properties>
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>javacv-platform</artifactId>
<version>1.5.11</version>
</dependency>
<!-- Additional dependencies required to use CUDA and cuDNN -->
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>opencv-platform-gpu</artifactId>
<version>4.10.0-1.5.11</version>
</dependency>
<!-- Optional GPL builds with (almost) everything enabled -->
<dependency>
<groupId>org.bytedeco</groupId>
<artifactId>ffmpeg-platform-gpl</artifactId>
<version>7.1-1.5.11</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>.</sourceDirectory>
</build>
</project>
```
And by placing the source code above in `Demo.java`, or similarly for other classes found in the [`samples`](samples), we can use the following command to have everything first installed automatically and then executed by Maven:
```bash
$ mvn compile exec:java -Dexec.mainClass=Demo
```
**Note**: In case of errors, please make sure that the `artifactId` in the `pom.xml` file reads `javacv-platform`, not `javacv` only, for example. The artifact `javacv-platform` adds all the necessary binary dependencies.
Build Instructions
------------------
If the binary files available above are not enough for your needs, you might need to rebuild them from the source code. To this end, the project files were created for:
* Maven 3.x http://maven.apache.org/download.html
* JavaCPP 1.5.11 https://github.com/bytedeco/javacpp
* JavaCPP Presets 1.5.11 https://github.com/bytedeco/javacpp-presets
Once installed, simply call the usual `mvn install` command for JavaCPP, its Presets, and JavaCV. By default, no other dependencies than a C++ compiler for JavaCPP are required. Please refer to the comments inside the `pom.xml` files for further details.
Instead of building the native libraries manually, we can run `mvn install` for JavaCV only and rely on the snapshot artifacts from the CI builds:
* http://bytedeco.org/builds/
----
Project lead: Samuel Audet [samuel.audet `at` gmail.com](mailto:samuel.audet at gmail.com)
Developer site: https://github.com/bytedeco/javacv
Discussion group: http://groups.google.com/group/javacv
", Assign "at most 3 tags" to the expected json: {"id":"1985","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"