AI prompts
base on HiFTNet: A Fast High-Quality Neural Vocoder with Harmonic-plus-Noise Filter and Inverse Short Time Fourier Transform # HiFTNet: A Fast High-Quality Neural Vocoder with Harmonic-plus-Noise Filter and Inverse Short Time Fourier Transform
### Yinghao Aaron Li, Cong Han, Xilin Jiang, Nima Mesgarani
> Recent advancements in speech synthesis have leveraged GAN-based networks like HiFi-GAN and BigVGAN to produce high-fidelity waveforms from mel-spectrograms. However, these networks are computationally expensive and parameter-heavy. iSTFTNet addresses these limitations by integrating inverse short-time Fourier transform (iSTFT) into the network, achieving both speed and parameter efficiency. In this paper, we introduce an extension to iSTFTNet, termed HiFTNet, which incorporates a harmonic-plus-noise source filter in the time-frequency domain that uses a sinusoidal source from the fundamental frequency (F0) inferred via a pre-trained F0 estimation network for fast inference speed. Subjective evaluations on LJSpeech show that our model significantly outperforms both iSTFTNet and HiFi-GAN, achieving ground-truth-level performance. HiFTNet also outperforms BigVGAN-base on LibriTTS for unseen speakers and achieves comparable performance to BigVGAN while being four times faster with only 1/6 of the parameters. Our work sets a new benchmark for efficient, high-quality neural vocoding, paving the way for real-time applications that demand high quality speech synthesis.
Paper: [https://arxiv.org/abs/2309.09493](https://arxiv.org/abs/2309.09493)
Audio samples: [https://hiftnet.github.io/](https://hiftnet.github.io/)
**Check our TTS work that uses HiFTNet as speech decoder for human-level speech synthesis here: https://github.com/yl4579/StyleTTS2**
## Pre-requisites
1. Python >= 3.7
2. Clone this repository:
```bash
git clone https://github.com/yl4579/HiFTNet.git
cd HiFTNet
```
3. Install python requirements:
```bash
pip install -r requirements.txt
```
## Training
```bash
python train.py --config config_v1.json --[args]
```
For the F0 model training, please refer to [yl4579/PitchExtractor](https://github.com/yl4579/PitchExtractor). This repo includes a pre-trained F0 model on LibriTTS. Still, you may want to train your own F0 model for the best performance, particularly for noisy or non-speech data, as we found that F0 estimation accuracy is essential for the vocoder performance.
## Inference
Please refer to the notebook [inference.ipynb](https://github.com/yl4579/HiFTNet/blob/main/inference.ipynb) for details.
### Pre-Trained Models
You can download the pre-trained LJSpeech model [here](https://drive.google.com/drive/folders/1gW9Qba0jEdH_2E0UrHyqsaNEbRkDS4nQ?usp=sharing) and the pre-trained LibriTTS model [here](https://drive.google.com/drive/folders/1vOJKNpzYzbv8J_hh3ox5RvlhHjmf8PcX?usp=sharing). The pre-trained models contain parameters of the optimizers and discriminators that can be used for fine-tuning.
## References
- [rishikksh20/iSTFTNet-pytorch](https://github.com/rishikksh20/iSTFTNet-pytorch)
- [nii-yamagishilab/project-NN-Pytorch-scripts/project/01-nsf](https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf)
", Assign "at most 3 tags" to the expected json: {"id":"2146","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"