AI prompts
base on 👑 Easy-to-use and powerful NLP and LLM library with 🤗 Awesome model zoo, supporting wide-range of NLP tasks from research to industrial applications, including 🗂Text Classification, 🔍 Neural Search, ❓ Question Answering, ℹ️ Information Extraction, 📄 Document Intelligence, 💌 Sentiment Analysis etc. **简体中文**🀄 | [English🌎](./README_en.md)
<p align="center">
<img src="https://user-images.githubusercontent.com/1371212/175816733-8ec25eb0-9af3-4380-9218-27c154518258.png" align="middle" width="500" />
</p>
------------------------------------------------------------------------------------------
<p align="center">
<a href="./LICENSE"><img src="https://img.shields.io/badge/license-Apache%202-dfd.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleNLP/releases"><img src="https://img.shields.io/github/v/release/PaddlePaddle/PaddleNLP?color=ffa"></a>
<a href=""><img src="https://img.shields.io/badge/python-3.7+-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-pink.svg"></a>
<a href="https://github.com/PaddlePaddle/PaddleNLP/graphs/contributors"><img src="https://img.shields.io/github/contributors/PaddlePaddle/PaddleNLP?color=9ea"></a>
<a href="https://github.com/PaddlePaddle/PaddleNLP/commits"><img src="https://img.shields.io/github/commit-activity/m/PaddlePaddle/PaddleNLP?color=3af"></a>
<a href="https://pypi.org/project/paddlenlp/"><img src="https://img.shields.io/pypi/dm/paddlenlp?color=9cf"></a>
<a href="https://github.com/PaddlePaddle/PaddleNLP/issues"><img src="https://img.shields.io/github/issues/PaddlePaddle/PaddleNLP?color=9cc"></a>
<a href="https://github.com/PaddlePaddle/PaddleNLP/stargazers"><img src="https://img.shields.io/github/stars/PaddlePaddle/PaddleNLP?color=ccf"></a>
</p>
<h4 align="center">
<a href=#特性> 特性 </a> |
<a href=#模型支持> 模型支持 </a> |
<a href=#安装> 安装 </a> |
<a href=#快速开始> 快速开始 </a> |
<a href=#社区交流> 社区交流 </a>
</h4>
**PaddleNLP**是一款基于飞桨深度学习框架的大语言模型(LLM)开发套件,支持在多种硬件上进行高效的大模型训练、无损压缩以及高性能推理。PaddleNLP 具备**简单易用**和**性能极致**的特点,致力于助力开发者实现高效的大模型产业级应用。
<a href="https://trendshift.io/repositories/2246" target="_blank"><img src="https://trendshift.io/api/badge/repositories/2246" alt="PaddlePaddle%2FPaddleNLP | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
## News 📢
* **2024.12.16 [PaddleNLP v3.0 Beta3](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v3.0.0-beta3)**:大模型功能全新升级,新增了Llama-3.2、DeepSeekV2模型,升级了TokenizerFast,快速分词,重构了SFTTrainer,一键开启SFT训练。此外,PaddleNLP还支持了优化器状态的卸载和重载功能,实现了精细化的重新计算,训练性能提升7%。在Unified Checkpoint方面,进一步优化了异步保存逻辑,模型存储加速95%,新增Checkpoint压缩功能,可节省78.5%存储空间。
最后,在大模型推理方面,升级Append Attention,支持了FP8量化,支持投机解码。
* **2024.12.13 📚《飞桨大模型套件 Unified Checkpoint 技术》**,加速模型存储95%,节省空间78%。支持全分布式策略调整自适应转换,提升模型训练的灵活性与可扩展性。训练-压缩-推理统一存储协议,无需手动转换提升全流程体验。Checkpoint 无损压缩结合异步保存,实现秒级存储并降低模型存储成本。适用于智能制造、指挥交通、医疗健康、金融服务等产业实际场景。12月24日(周二)19:00直播为您详细解读该技术如何优化大模型训练流程。报名链接:https://www.wjx.top/vm/huZkHn9.aspx?udsid=787976
* **2024.11.28 📚《FlashRAG-Paddle | 基于 PaddleNLP 的高效开发与评测 RAG 框架》**,为文本更快更好构建准确嵌入表示、加速推理生成速度。PaddleNLP 支持超大 Batch 嵌入表示学习与多硬件高性能推理,涵盖 INT8/INT4量化技术及多种高效注意力机制优化与 TensorCore 深度优化。内置全环节算子融合技术,使得 FlashRAG 推理性能相比 transformers 动态图提升70%以上,结合检索增强知识输出结果更加准确,带来敏捷高效的使用体验。直播时间:12月3日(周二)19:00。报名链接:https://www.wjx.top/vm/eaBa1vA.aspx?udsid=682361
<details><summary> <b>点击展开</b> </summary><div>
* **2024.08.08 📚《飞桨产业级大语言模型开发利器 PaddleNLP 3.0 重磅发布》**,训压推全流程贯通,主流模型全覆盖。大模型自动并行,千亿模型训推全流程开箱即用。提供产业级高性能精调与对齐解决方案,压缩推理领先,多硬件适配。覆盖产业级智能助手、内容创作、知识问答、关键信息抽取等应用场景。直播时间:8月22日(周四)19:00。报名链接:https://www.wjx.top/vm/Y2f7FFY.aspx?udsid=143844
* **2024.06.27 [PaddleNLP v3.0 Beta](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v3.0.0-beta0)**:拥抱大模型,体验全升级。统一大模型套件,实现国产计算芯片全流程接入;全面支持飞桨4D 并行配置、高效精调策略、高效对齐算法、高性能推理等大模型产业级应用流程;自研极致收敛的 RsLoRA+算法、自动扩缩容存储机制 Unified Checkpoint 和通用化支持的 FastFFN、FusedQKV 助力大模型训推;主流模型持续支持更新,提供高效解决方案。
* **2024.04.24 [PaddleNLP v2.8](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.8.0)**:自研极致收敛的 RsLoRA+算法,大幅提升 PEFT 训练收敛速度以及训练效果;引入高性能生成加速到 RLHF PPO 算法,打破 PPO 训练中生成速度瓶颈,PPO 训练性能大幅领先。通用化支持 FastFFN、FusedQKV 等多个大模型训练性能优化方式,大模型训练更快、更稳定。
</div></details>
## 特性
### <a href=#多硬件训推一体> 🔧 多硬件训推一体 </a>
支持英伟达 GPU、昆仑 XPU、昇腾 NPU、燧原 GCU 和海光 DCU 等多个硬件的大模型和自然语言理解模型训练和推理,套件接口支持硬件快速切换,大幅降低硬件切换研发成本。
当前支持的自然语言理解模型:[多硬件自然语言理解模型列表](./docs/model_zoo/model_list_multy_device.md)
### <a href=#高效易用的预训练> 🚀 高效易用的预训练 </a>
支持纯数据并行策略、分组参数切片的数据并行策略、张量模型并行策略和流水线模型并行策略的4D 高性能训练,Trainer 支持分布式策略配置化,降低复杂分布式组合带来的使用成本;
[Unified Checkpoint 大模型存储工具](./llm/docs/unified_checkpoint.md)可以使得训练断点支持机器资源动态扩缩容恢复。此外,异步保存,模型存储可加速95%,Checkpoint压缩,可节省78.5%存储空间。
### <a href=#高效精调> 🤗 高效精调 </a>
精调算法深度结合零填充数据流和 [FlashMask](./llm/docs/flashmask.md) 高性能算子,降低训练无效数据填充和计算,大幅提升精调训练吞吐。
### <a href=#无损压缩和高性能推理> 🎛️ 无损压缩和高性能推理 </a>
大模型套件高性能推理模块内置动态插入和全环节算子融合策略,极大加快并行推理速度。底层实现细节封装化,实现开箱即用的高性能并行推理能力。
------------------------------------------------------------------------------------------
## 模型支持
* 模型参数已支持 LLaMA 系列、Baichuan 系列、Bloom 系列、ChatGLM 系列、Gemma 系列、Mistral 系列、OPT 系列和 Qwen 系列,详细列表👉【LLM】模型参数支持列表如下:
| 模型系列 | 模型名称 |
|:-------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [LLaMA](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/llama) | facebook/llama-7b, facebook/llama-13b, facebook/llama-30b, facebook/llama-65b |
| [Llama2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/llama) | meta-llama/Llama-2-7b, meta-llama/Llama-2-7b-chat, meta-llama/Llama-2-13b, meta-llama/Llama-2-13b-chat, meta-llama/Llama-2-70b, meta-llama/Llama-2-70b-chat |
| [Llama3](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/llama) | meta-llama/Meta-Llama-3-8B, meta-llama/Meta-Llama-3-8B-Instruct, meta-llama/Meta-Llama-3-70B, meta-llama/Meta-Llama-3-70B-Instruct |
| [Llama3.1](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/llama) | meta-llama/Meta-Llama-3.1-8B, meta-llama/Meta-Llama-3.1-8B-Instruct, meta-llama/Meta-Llama-3.1-70B, meta-llama/Meta-Llama-3.1-70B-Instruct, meta-llama/Meta-Llama-3.1-405B, meta-llama/Meta-Llama-3.1-405B-Instruct, meta-llama/Llama-Guard-3-8B |
| [Llama3.2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/llama) | meta-llama/Llama-3.2-1B, meta-llama/Llama-3.2-1B-Instruct, meta-llama/Llama-3.2-3B, meta-llama/Llama-3.2-3B-Instruct, meta-llama/Llama-Guard-3-1B |
| [Llama3.3](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/llama) | meta-llama/Llama-3.3-70B-Instruct |
| [Baichuan](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/baichuan) | baichuan-inc/Baichuan-7B, baichuan-inc/Baichuan-13B-Base, baichuan-inc/Baichuan-13B-Chat |
| [Baichuan2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/baichuan) | baichuan-inc/Baichuan2-7B-Base, baichuan-inc/Baichuan2-7B-Chat, baichuan-inc/Baichuan2-13B-Base, baichuan-inc/Baichuan2-13B-Chat |
| [Bloom](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/bloom) | bigscience/bloom-560m, bigscience/bloom-560m-bf16, bigscience/bloom-1b1, bigscience/bloom-3b, bigscience/bloom-7b1, bigscience/bloomz-560m, bigscience/bloomz-1b1, bigscience/bloomz-3b, bigscience/bloomz-7b1-mt, bigscience/bloomz-7b1-p3, bigscience/bloomz-7b1, bellegroup/belle-7b-2m |
| [ChatGLM](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/chatglm/) | THUDM/chatglm-6b, THUDM/chatglm-6b-v1.1 |
| [ChatGLM2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/chatglm2) | THUDM/chatglm2-6b |
| [ChatGLM3](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/chatglm2) | THUDM/chatglm3-6b |
| [DeepSeekV2](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/llm/config/deepseek-v2) | deepseek-ai/DeepSeek-V2, deepseek-ai/DeepSeek-V2-Chat, deepseek-ai/DeepSeek-V2-Lite, deepseek-ai/DeepSeek-V2-Lite-Chat, deepseek-ai/DeepSeek-Coder-V2-Base, deepseek-ai/DeepSeek-Coder-V2-Instruct, deepseek-ai/DeepSeek-Coder-V2-Lite-Base, deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct |
| [Gemma](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/gemma) | google/gemma-7b, google/gemma-7b-it, google/gemma-2b, google/gemma-2b-it |
| [Mistral](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/mistral) | mistralai/Mistral-7B-Instruct-v0.3, mistralai/Mistral-7B-v0.1 |
| [Mixtral](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/mixtral) | mistralai/Mixtral-8x7B-Instruct-v0.1 |
| [OPT](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/opt) | facebook/opt-125m, facebook/opt-350m, facebook/opt-1.3b, facebook/opt-2.7b, facebook/opt-6.7b, facebook/opt-13b, facebook/opt-30b, facebook/opt-66b, facebook/opt-iml-1.3b, opt-iml-max-1.3b |
| [Qwen](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | qwen/qwen-7b, qwen/qwen-7b-chat, qwen/qwen-14b, qwen/qwen-14b-chat, qwen/qwen-72b, qwen/qwen-72b-chat, |
| [Qwen1.5](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen1.5-0.5B, Qwen/Qwen1.5-0.5B-Chat, Qwen/Qwen1.5-1.8B, Qwen/Qwen1.5-1.8B-Chat, Qwen/Qwen1.5-4B, Qwen/Qwen1.5-4B-Chat, Qwen/Qwen1.5-7B, Qwen/Qwen1.5-7B-Chat, Qwen/Qwen1.5-14B, Qwen/Qwen1.5-14B-Chat, Qwen/Qwen1.5-32B, Qwen/Qwen1.5-32B-Chat, Qwen/Qwen1.5-72B, Qwen/Qwen1.5-72B-Chat, Qwen/Qwen1.5-110B, Qwen/Qwen1.5-110B-Chat, Qwen/Qwen1.5-MoE-A2.7B, Qwen/Qwen1.5-MoE-A2.7B-Chat |
| [Qwen2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen2-0.5B, Qwen/Qwen2-0.5B-Instruct, Qwen/Qwen2-1.5B, Qwen/Qwen2-1.5B-Instruct, Qwen/Qwen2-7B, Qwen/Qwen2-7B-Instruct, Qwen/Qwen2-72B, Qwen/Qwen2-72B-Instruct, Qwen/Qwen2-57B-A14B, Qwen/Qwen2-57B-A14B-Instruct |
| [Qwen2-Math](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen2-Math-1.5B, Qwen/Qwen2-Math-1.5B-Instruct, Qwen/Qwen2-Math-7B, Qwen/Qwen2-Math-7B-Instruct, Qwen/Qwen2-Math-72B, Qwen/Qwen2-Math-72B-Instruct, Qwen/Qwen2-Math-RM-72B |
| [Qwen2.5](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen2.5-0.5B, Qwen/Qwen2.5-0.5B-Instruct, Qwen/Qwen2.5-1.5B, Qwen/Qwen2.5-1.5B-Instruct, Qwen/Qwen2.5-3B, Qwen/Qwen2.5-3B-Instruct, Qwen/Qwen2.5-7B, Qwen/Qwen2.5-7B-Instruct, Qwen/Qwen2.5-14B, Qwen/Qwen2.5-14B-Instruct, Qwen/Qwen2.5-32B, Qwen/Qwen2.5-32B-Instruct, Qwen/Qwen2.5-72B, Qwen/Qwen2.5-72B-Instruct |
| [Qwen2.5-Math](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen2.5-Math-1.5B, Qwen/Qwen2.5-Math-1.5B-Instruct, Qwen/Qwen2.5-Math-7B, Qwen/Qwen2.5-Math-7B-Instruct, Qwen/Qwen2.5-Math-72B, Qwen/Qwen2.5-Math-72B-Instruct, Qwen/Qwen2.5-Math-RM-72B |
| [Qwen2.5-Coder](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/qwen/) | Qwen/Qwen2.5-Coder-1.5B, Qwen/Qwen2.5-Coder-1.5B-Instruct, Qwen/Qwen2.5-Coder-7B, Qwen/Qwen2.5-Coder-7B-Instruct |
| [Yuan2](https://github.com/PaddlePaddle/PaddleNLP/tree/develop/llm/config/yuan/) | IEITYuan/Yuan2-2B, IEITYuan/Yuan2-51B, IEITYuan/Yuan2-102B |
* 4D 并行和算子优化已支持 LLaMA 系列、Baichuan 系列、Bloom 系列、ChatGLM 系列、Gemma 系列、Mistral 系列、OPT 系列和 Qwen 系列,【LLM】模型4D 并行和算子支持列表如下:
| 模型名称/并行能力支持 | 数据并行 | 张量模型并行 | | 参数分片并行 | | | 流水线并行 |
|:---------------------:|:--------:|:------------:|:--------:|:------------:|:------:|:------:|:----------:|
| | | 基础能力 | 序列并行 | stage1 | stage2 | stage3 | |
| Llama | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Qwen | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Qwen1.5 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Qwen2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Mixtral(moe) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 |
| Mistral | ✅ | ✅ | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| Baichuan | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Baichuan2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ChatGLM | ✅ | ✅ | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| ChatGLM2 | ✅ | 🚧 | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| ChatGLM3 | ✅ | 🚧 | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| Bloom | ✅ | ✅ | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| GPT-2/GPT-3 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| OPT | ✅ | ✅ | 🚧 | ✅ | ✅ | ✅ | 🚧 |
| Gemma | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| Yuan2 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 |
* 大模型预训练、精调(包含 SFT、PEFT 技术)、对齐、量化已支持 LLaMA 系列、Baichuan 系列、Bloom 系列、ChatGLM 系列、Mistral 系列、OPT 系列和 Qwen 系列,【LLM】模型预训练、精调、对齐、量化支持列表如下:
| Model | Pretrain | SFT | LoRA | FlashMask | Prefix Tuning | DPO/SimPO/ORPO | RLHF | Quantization |
|--------------------------------------------|:--------:|:---:|:----:|:---------:|:-------------:|:--------------:|:----:|:------------:|
| [Llama](./llm/config/llama) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen](./llm/config/qwen) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 | 🚧 |
| [Mixtral](./llm/config/mixtral) | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | 🚧 | 🚧 |
| [Mistral](./llm/config/mistral) | ✅ | ✅ | ✅ | 🚧 | ✅ | ✅ | 🚧 | 🚧 |
| [Baichuan/Baichuan2](./llm/config/llama) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 | ✅ |
| [ChatGLM-6B](./llm/config/chatglm) | ✅ | ✅ | ✅ | 🚧 | ✅ | 🚧 | 🚧 | ✅ |
| [ChatGLM2/ChatGLM3](./llm/config/chatglm2) | ✅ | ✅ | ✅ | 🚧 | ✅ | ✅ | 🚧 | ✅ |
| [Bloom](./llm/config/bloom) | ✅ | ✅ | ✅ | 🚧 | ✅ | 🚧 | 🚧 | ✅ |
| [GPT-3](./llm/config/gpt-3) | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | 🚧 | 🚧 |
| [OPT](./llm/config/opt) | ✅ | ✅ | ✅ | 🚧 | 🚧 | 🚧 | 🚧 | 🚧 |
| [Gemma](./llm/config/gemma) | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | 🚧 | 🚧 |
| [Yuan](./llm/config/yuan) | ✅ | ✅ | ✅ | 🚧 | 🚧 | ✅ | 🚧 | 🚧 |
* [大模型推理](./llm/docs/predict/inference.md)已支持 LLaMA 系列、Qwen 系列、Mistral 系列、ChatGLM 系列、Bloom 系列和 Baichuan 系列,支持 Weight Only INT8及 INT4推理,支持 WAC(权重、激活、Cache KV)进行 INT8、FP8量化的推理,【LLM】模型推理支持列表如下:
| 模型名称/量化类型支持 | FP16/BF16 | WINT8 | WINT4 | INT8-A8W8 | FP8-A8W8 | INT8-A8W8C8 |
|:----------------------------------------:|:---------:|:-----:|:-----:|:---------:|:--------:|:-----------:|
| [LLaMA](./llm/docs/predict/llama.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen](./llm/docs/predict/qwen.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [Qwen-Moe](./llm/docs/predict/qwen.md) | ✅ | ✅ | ✅ | 🚧 | 🚧 | 🚧 |
| [Mixtral](./llm/docs/predict/mixtral.md) | ✅ | ✅ | ✅ | 🚧 | 🚧 | 🚧 |
| ChatGLM | ✅ | ✅ | ✅ | 🚧 | 🚧 | 🚧 |
| Bloom | ✅ | ✅ | ✅ | 🚧 | 🚧 | 🚧 |
| BaiChuan | ✅ | ✅ | ✅ | ✅ | ✅ | 🚧 |
## 安装
### 环境依赖
* python >= 3.8
* paddlepaddle >= 3.0.0b0
如果您尚未安装 PaddlePaddle,请参考 [飞桨官网](https://www.paddlepaddle.org.cn/) 进行安装。
### pip 安装
```shell
pip install --upgrade paddlenlp==3.0.0b3
```
或者可通过以下命令安装最新 develop 分支代码:
```shell
pip install --pre --upgrade paddlenlp -f https://www.paddlepaddle.org.cn/whl/paddlenlp.html
```
更多关于 PaddlePaddle 和 PaddleNLP 安装的详细教程请查看[Installation](./docs/get_started/installation.rst)。
------------------------------------------------------------------------------------------
## 快速开始
### 大模型文本生成
PaddleNLP 提供了方便易用的 Auto API,能够快速的加载模型和 Tokenizer。这里以使用 `Qwen/Qwen2-0.5B` 模型做文本生成为例:
```python
>>> from paddlenlp.transformers import AutoTokenizer, AutoModelForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B", dtype="float16")
>>> input_features = tokenizer("你好!请自我介绍一下。", return_tensors="pd")
>>> outputs = model.generate(**input_features, max_length=128)
>>> print(tokenizer.batch_decode(outputs[0], skip_special_tokens=True))
['我是一个AI语言模型,我可以回答各种问题,包括但不限于:天气、新闻、历史、文化、科学、教育、娱乐等。请问您有什么需要了解的吗?']
```
### 大模型预训练
```shell
git clone https://github.com/PaddlePaddle/PaddleNLP.git && cd PaddleNLP # 如已clone或下载PaddleNLP可跳过
mkdir -p llm/data && cd llm/data
wget https://bj.bcebos.com/paddlenlp/models/transformers/llama/data/llama_openwebtext_100k.bin
wget https://bj.bcebos.com/paddlenlp/models/transformers/llama/data/llama_openwebtext_100k.idx
cd .. # change folder to PaddleNLP/llm
python -u -m paddle.distributed.launch --gpus "0,1,2,3,4,5,6,7" run_pretrain.py ./config/llama/pretrain_argument.json
```
### 大模型 SFT 精调
```shell
git clone https://github.com/PaddlePaddle/PaddleNLP.git && cd PaddleNLP # 如已clone或下载PaddleNLP可跳过
mkdir -p llm/data && cd llm/data
wget https://bj.bcebos.com/paddlenlp/datasets/examples/AdvertiseGen.tar.gz && tar -zxvf AdvertiseGen.tar.gz
cd .. # change folder to PaddleNLP/llm
python -u -m paddle.distributed.launch --gpus "0,1,2,3,4,5,6,7" run_finetune.py ./config/llama/sft_argument.json
```
更多大模型全流程步骤,请参考[飞桨大模型套件](./llm)介绍。
另外我们还提供了快速微调方式, 无需 clone 源代码:
```python
from paddlenlp.trl import SFTConfig, SFTTrainer
from datasets import load_dataset
dataset = load_dataset("ZHUI/alpaca_demo", split="train")
training_args = SFTConfig(output_dir="Qwen/Qwen2.5-0.5B-SFT", device="gpu")
trainer = SFTTrainer(
args=training_args,
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
)
trainer.train()
```
更多 PaddleNLP 内容可参考:
* [精选模型库](./slm/model_zoo),包含优质预训练模型的端到端全流程使用。
* [多场景示例](./slm/examples),了解如何使用 PaddleNLP 解决 NLP 多种技术问题,包含基础技术、系统应用与拓展应用。
* [交互式教程](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995),在🆓免费算力平台 AI Studio 上快速学习 PaddleNLP。
------------------------------------------------------------------------------------------
## 社区交流
* 微信扫描二维码并填写问卷,即可加入交流群与众多社区开发者以及官方团队深度交流.
<div align="center">
<img src="https://github.com/user-attachments/assets/3a58cc9f-69c7-4ccb-b6f5-73e966b8051a" width="150" height="150" />
</div>
## Citation
如果 PaddleNLP 对您的研究有帮助,欢迎引用
```bibtex
@misc{=paddlenlp,
title={PaddleNLP: An Easy-to-use and High Performance NLP Library},
author={PaddleNLP Contributors},
howpublished = {\url{https://github.com/PaddlePaddle/PaddleNLP}},
year={2021}
}
```
## Acknowledge
我们借鉴了 Hugging Face 的[Transformers](https://github.com/huggingface/transformers)🤗关于预训练模型使用的优秀设计,在此对 Hugging Face 作者及其开源社区表示感谢。
## License
PaddleNLP 遵循[Apache-2.0开源协议](./LICENSE)。
", Assign "at most 3 tags" to the expected json: {"id":"2246","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"