base on Refine high-quality datasets and visual AI models <div align="center">
<p align="center">
<!-- prettier-ignore -->
<img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="55px">
<img src="https://user-images.githubusercontent.com/25985824/106288518-24bb7680-6216-11eb-8f10-60052c519586.png" height="50px">
**The open-source tool for building high-quality datasets and computer vision
models**
---
<!-- prettier-ignore -->
<a href="https://voxel51.com/fiftyone">Website</a> •
<a href="https://voxel51.com/docs/fiftyone">Docs</a> •
<a href="https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb">Try it Now</a> •
<a href="https://voxel51.com/docs/fiftyone/tutorials/index.html">Tutorials</a> •
<a href="https://github.com/voxel51/fiftyone-examples">Examples</a> •
<a href="https://voxel51.com/blog/">Blog</a> •
<a href="https://discord.gg/fiftyone-community">Community</a>
[](https://pypi.org/project/fiftyone)
[](https://pypi.org/project/fiftyone)
[](https://pepy.tech/project/fiftyone)
[](https://hub.docker.com/r/voxel51/fiftyone/)
[](LICENSE)
[](https://discord.gg/fiftyone-community)
[](https://medium.com/voxel51)
[](https://share.hsforms.com/1zpJ60ggaQtOoVeBqIZdaaA2ykyk)
[](https://twitter.com/voxel51)
</p>
</div>
# 👋 hey there!
We created **[FiftyOne](https://fiftyone.ai)** to supercharge your visual AI
projects by enabling you to visualize datasets, analyze models, and improve
data quality more efficiently than ever before 🤝
If you're looking to scale to production-grade, collaborative, cloud-native
enterprise workloads, check out
**[FiftyOne Enterprise](http://voxel51.com/enterprise)** 🚀

<div id='installation'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> installation 💻
As simple as:
```shell
pip install fiftyone
```
<details>
<summary>More details</summary>
### Installation options
FiftyOne supports Python 3.9 - 3.11.
For most users, we recommend installing the latest release version of FiftyOne
via `pip` as shown above.
If you want to contribute to FiftyOne or install the latest development
version, then you can also perform a [source install](#source-install).
See the [prerequisites section](#prerequisites) for system-specific setup
information.
We strongly recommend that you install FiftyOne in a
[virtual environment](https://voxel51.com/docs/fiftyone/getting_started/virtualenv.html)
to maintain a clean workspace.
Consult the
[installation guide](https://voxel51.com/docs/fiftyone/getting_started/install.html)
for troubleshooting and other information about getting up-and-running with
FiftyOne.
</details>
<div id='source-install'/>
<details>
<summary>Install from source</summary>
### Source installations
Follow the instructions below to install FiftyOne from source and build the
App.
You'll need the following tools installed:
- [Python](https://www.python.org) (3.9 - 3.11)
- [Node.js](https://nodejs.org) - on Linux, we recommend using
[nvm](https://github.com/nvm-sh/nvm) to install an up-to-date version.
- [Yarn](https://yarnpkg.com) - once Node.js is installed, you can
[enable Yarn](https://yarnpkg.com/getting-started/install) via
`corepack enable`
We strongly recommend that you install FiftyOne in a
[virtual environment](https://voxel51.com/docs/fiftyone/getting_started/virtualenv.html)
to maintain a clean workspace.
If you are working in Google Colab,
[skip to here](#source-installs-in-google-colab).
First, clone the repository:
```shell
git clone https://github.com/voxel51/fiftyone
cd fiftyone
```
Then run the install script:
```shell
# Mac or Linux
bash install.bash
# Windows
.\install.bat
```
If you run into issues importing FiftyOne, you may need to add the path to the
cloned repository to your `PYTHONPATH`:
```shell
export PYTHONPATH=$PYTHONPATH:/path/to/fiftyone
```
Note that the install script adds to your `nvm` settings in your `~/.bashrc` or
`~/.bash_profile`, which is needed for installing and building the App.
### Upgrading your source installation
To upgrade an existing source installation to the bleeding edge, simply pull
the latest `develop` branch and rerun the install script:
```shell
git checkout develop
git pull
# Mac or Linux
bash install.bash
# Windows
.\install.bat
```
### Rebuilding the App
When you pull in new changes to the App, you will need to rebuild it, which you
can do either by rerunning the install script or just running `yarn build` in
the `./app` directory.
### Developer installation
If you would like to
[contribute to FiftyOne](https://github.com/voxel51/fiftyone/blob/develop/CONTRIBUTING.md),
you should perform a developer installation using the `-d` flag of the install
script:
```shell
# Mac or Linux
bash install.bash -d
# Windows
.\install.bat -d
```
Although not required, developers typically prefer to configure their FiftyOne
installation to connect to a self-installed and managed instance of MongoDB,
which you can do by following
[these simple steps](https://docs.voxel51.com/user_guide/config.html#configuring-a-mongodb-connection).
### Source installs in Google Colab
You can install from source in
[Google Colab](https://colab.research.google.com) by running the following in a
cell and then **restarting the runtime**:
```shell
%%shell
git clone --depth 1 https://github.com/voxel51/fiftyone.git
cd fiftyone
# Mac or Linux
bash install.bash
# Windows
.\install.bat
```
### Generating documentation
See the
[docs guide](https://github.com/voxel51/fiftyone/blob/develop/docs/README.md)
for information on building and contributing to the documentation.
### Uninstallation
You can uninstall FiftyOne as follows:
```shell
pip uninstall fiftyone fiftyone-brain fiftyone-db
```
</details>
<div id='prerequisites'/>
<details>
<summary>Prerequisites for beginners</summary>
### System-specific setup
Follow the instructions for your operating system or environment to perform
basic system setup before [installing FiftyOne](#installation).
If you're an experienced developer, you've likely already done this.
<details>
<summary>Linux</summary>
<div id='prerequisites-linux'/>
#### 1. Install Python and other dependencies
These steps work on a clean install of Ubuntu Desktop 24.04, and should also
work on Ubuntu 24.04 and 22.04, and on Ubuntu Server:
```shell
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install python3-venv python3-dev build-essential git-all libgl1-mesa-dev
```
- On Linux, you will need at least the `openssl` and `libcurl` packages
- On Debian-based distributions, you will need to install `libcurl4` or
`libcurl3` instead of `libcurl`, depending on the age of your distribution
```shell
# Ubuntu
sudo apt install libcurl4 openssl
# Fedora
sudo dnf install libcurl openssl
```
#### 2. Create and activate a virtual environment
```shell
python3 -m venv fiftyone_env
source fiftyone_env/bin/activate
```
#### 3. Install FFmpeg (optional)
If you plan to work with video datasets, you'll need to install
[FFmpeg](https://ffmpeg.org):
```shell
sudo apt-get install ffmpeg
```
</details>
<details>
<summary>MacOS</summary>
<div id='prerequisites-macos'/>
#### 1. Install Xcode Command Line Tools
```shell
xcode-select --install
```
#### 2. Install Homebrew
```shell
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
After running the above command, follow the instructions in your terminal to
complete the Homebrew installation.
#### 3. Install Python
```shell
brew install
[email protected]
brew install protobuf
```
#### 4. Create and activate a virtual environment
```shell
python3 -m venv fiftyone_env
source fiftyone_env/bin/activate
```
#### 5. Install FFmpeg (optional)
If you plan to work with video datasets, you'll need to install
[FFmpeg](https://ffmpeg.org):
```shell
brew install ffmpeg
```
</details>
<details>
<summary>Windows</summary>
<div id='prerequisites-windows'/>
#### 1. Install Python
⚠️ The version of Python that is available in the Microsoft Store is **not
recommended** ⚠️
Download a Python 3.9 - 3.11 installer from
[python.org](https://www.python.org/downloads/). Make sure to pick a 64-bit
version. For example, this
[Python 3.10.11 installer](https://www.python.org/ftp/python/3.10.11/python-3.10.11-amd64.exe).
Double-click on the installer to run it, and follow the steps in the installer.
- Check the box to add Python to your `PATH`
- At the end of the installer, there is an option to disable the `PATH`
length limit. It is recommended to click this
#### 2. Install Microsoft Visual C++
Download
[Microsoft Visual C++ Redistributable](https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist).
Double-click on the installer to run it, and follow the steps in the installer.
#### 3. Install Git
Download Git from [this link](https://git-scm.com/download/win). Double-click
on the installer to run it, and follow the steps in the installer.
#### 4. Create and activate a virtual environment
- Press `Win + R`. type `cmd`, and press `Enter`. Alternatively, search
**Command Prompt** in the Start Menu.
- Navigate to your project. `cd C:\path\to\your\project`
- Create the environment `python -m venv fiftyone_env`
- Activate the environment typing this in the command line window
`fiftyone_env\Scripts\activate`
- After activation, your command prompt should change and show the name of
the virtual environment `(fiftyon_env) C:\path\to\your\project`
#### 5. Install FFmpeg (optional)
If you plan to work with video datasets, you'll need to install
[FFmpeg](https://ffmpeg.org).
Download an FFmpeg binary from [here](https://ffmpeg.org/download.html). Add
FFmpeg's path (e.g., `C:\ffmpeg\bin`) to your `PATH` environmental variable.
</details>
<details>
<summary>Docker</summary>
<div id='prerequisites-docker'/>
<br>
Refer to
[these instructions](https://voxel51.com/docs/fiftyone/environments/index.html#docker)
to see how to build and run Docker images containing release or source builds
of FiftyOne.
</details>
</details>

<div id='quickstart'>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> quickstart 🚀
Dive right into FiftyOne by opening a Python shell and running the snippet
below, which downloads a
[small dataset](https://voxel51.com/docs/fiftyone/user_guide/dataset_zoo/datasets.html#quickstart)
and launches the
[FiftyOne App](https://voxel51.com/docs/fiftyone/user_guide/app.html) so you
can explore it:
```py
import fiftyone as fo
import fiftyone.zoo as foz
dataset = foz.load_zoo_dataset("quickstart")
session = fo.launch_app(dataset)
```
Then check out
[this Colab notebook](https://colab.research.google.com/github/voxel51/fiftyone-examples/blob/master/examples/quickstart.ipynb)
to see some common workflows on the quickstart dataset.
Note that if you are running the above code in a script, you must include
`session.wait()` to block execution until you close the App. See
[this page](https://voxel51.com/docs/fiftyone/user_guide/app.html#creating-a-session)
for more information.

<div id='key-features'>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> key features 🔑
- **[Visualize Complex Datasets:](https://docs.voxel51.com/user_guide/app.html)**
Easily explore images, videos, and associated labels in a powerful visual
interface.
https://github.com/user-attachments/assets/9dc2db88-967d-43fa-bda0-85e4d5ab6a7a
- **[Explore Embeddings:](https://docs.voxel51.com/user_guide/app.html#embeddings-panel)**
Select points of interest and view the corresponding samples/labels.
https://github.com/user-attachments/assets/246faeb7-dcab-4e01-9357-e50f6b106da7
- **[Analyze and Improve Models:](https://docs.voxel51.com/user_guide/evaluation.html)**
Evaluate model performance, identify failure modes, and fine-tune your
models.
https://github.com/user-attachments/assets/8c32d6c4-51e7-4fea-9a3c-2ffd9690f5d6
- **[Advanced Data Curation:](https://docs.voxel51.com/brain.html)** Quickly
find and fix data issues, annotation errors, and edge cases.
https://github.com/user-attachments/assets/24fa1960-c2dd-46ae-ae5f-d58b3b84cfe4
- **[Rich Integrations:](https://docs.voxel51.com/integrations/index.html)**
Works with popular deep learning libraries like PyTorch, Hugging Face,
Ultralytics, and more.
https://github.com/user-attachments/assets/de5f25e1-a967-4362-9e04-616449e745e5
- **[Open and Extensible:](https://docs.voxel51.com/plugins/index.html)**
Customize and extend FiftyOne to fit your specific needs.
https://github.com/user-attachments/assets/c7ed496d-0cf7-45d6-9853-e349f1abd6f8
<div id='additional-resources'>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> additional resources 🚁
| [FiftyOne Enterprise](https://voxel51.com/enterprise) | [VoxelGPT](https://github.com/voxel51/voxelgpt) | [Plugins](https://voxel51.com/plugins) | [Vector Search](https://voxel51.com/blog/the-computer-vision-interface-for-vector-search) | [Dataset Zoo](https://docs.voxel51.com/dataset_zoo/index.html) | [Model Zoo](https://docs.voxel51.com/model_zoo/index.html) | [FiftyOne Brain](https://docs.voxel51.com/brain.html) |
| ----------------------------------------------------- | ----------------------------------------------- | -------------------------------------- | ----------------------------------------------------------------------------------------- | -------------------------------------------------------------- | ---------------------------------------------------------- | ----------------------------------------------------- |
</div>

<div id='documentation'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> documentation 🪪
Full documentation for FiftyOne is available at
[fiftyone.ai](https://fiftyone.ai).
| [Tutorials](https://voxel51.com/docs/fiftyone/tutorials/index.html) | [Recipes](https://voxel51.com/docs/fiftyone/recipes/index.html) | [Examples](https://github.com/voxel51/fiftyone-examples) | [User Guide](https://voxel51.com/docs/fiftyone/user_guide/index.html) | [CLI Documentation](https://voxel51.com/docs/fiftyone/cli/index.html) | [API Reference](https://voxel51.com/docs/fiftyone/api/fiftyone.html) |
| ------------------------------------------------------------------- | --------------------------------------------------------------- | -------------------------------------------------------- | --------------------------------------------------------------------- | --------------------------------------------------------------------- | -------------------------------------------------------------------- |
</div>

<div id='fiftyone-teams'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> FiftyOne Enterprise 🏎️
Want to securely collaborate on billions of samples in the cloud and connect to
your compute resources to automate your workflows? Check out
[FiftyOne Enterprise](https://voxel51.com/enterprise).

<div id='faq'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> faq & troubleshooting ⛓️💥
Refer to our
[common issues](https://docs.voxel51.com/getting_started/troubleshooting.html)
page to troubleshoot installation issues. If you're still stuck, check our
[frequently asked questions](https://docs.voxel51.com/faq/index.html) page for
more answers.
If you encounter an issue that the above resources don't help you resolve, feel
free to [open an issue on GitHub](https://github.com/voxel51/fiftyone/issues)
or contact us on [Discord](https://discord.gg/fiftyone-community).
</div>

<div id='community'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> join our community 🤝
Connect with us through your preferred channels:
[](https://discord.gg/fiftyone-community)
[](https://medium.com/voxel51)
[](https://twitter.com/voxel51)
[](https://www.linkedin.com/company/voxel51)
[](https://www.facebook.com/voxel51)
🎊 **Share how FiftyOne makes your visual AI projects a reality on social media
and tag us with @Voxel51 and #FiftyOne** 🎊
</div>

<div id='contributors'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> contributors 🧡
FiftyOne and [FiftyOne Brain](https://github.com/voxel51/fiftyone-brain) are
open source and community contributions are welcome! Check out the
[contribution guide](https://github.com/voxel51/fiftyone/blob/develop/CONTRIBUTING.md)
to learn how to get involved.
Special thanks to these amazing people for contributing to FiftyOne!
<a href="https://github.com/voxel51/fiftyone/graphs/contributors">
<img src="https://contrib.rocks/image?repo=voxel51/fiftyone" />
</a>

<div id='citation'/>
## <img src="https://user-images.githubusercontent.com/25985824/106288517-2422e000-6216-11eb-871d-26ad2e7b1e59.png" height="20px"> citation 📖
If you use FiftyOne in your research, feel free to cite the project (but only
if you love it 😊):
```bibtex
@article{moore2020fiftyone,
title={FiftyOne},
author={Moore, B. E. and Corso, J. J.},
journal={GitHub. Note: https://github.com/voxel51/fiftyone},
year={2020}
}
```
", Assign "at most 3 tags" to the expected json: {"id":"3050","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"