base on 🌌 A complete search engine and RAG pipeline in your browser, server or edge network with support for full-text, vector, and hybrid search in less than 2kb. <p align="center"> <img src="https://raw.githubusercontent.com/oramasearch/orama/refs/heads/main/misc/readme/orama-readme-hero-dark.png#gh-dark-mode-only" /> <img src="https://raw.githubusercontent.com/oramasearch/orama/refs/heads/main/misc/readme/orama-readme-hero-light.png#gh-light-mode-only" /> </p> [![Tests](https://github.com/oramasearch/orama/actions/workflows/turbo.yml/badge.svg)](https://github.com/oramasearch/orama/actions/workflows/turbo.yml) If you need more info, help, or want to provide general feedback on Orama, join the [Orama Slack channel](https://orama.to/slack) # Highlighted features - [Full-Text search](https://docs.orama.com/docs/orama-js/search) - [Vector Search](https://docs.orama.com/docs/orama-js/search/vector-search) - [Hybrid Search](https://docs.orama.com/docs/orama-js/search/hybrid-search) - [GenAI Chat Sessions](https://docs.orama.com/docs/orama-js/answer-engine) - [Search Filters](https://docs.orama.com/docs/orama-js/search/filters) - [Geosearch](https://docs.orama.com/docs/orama-js/search/geosearch) - [Pinning Rules (Merchandising)](https://docs.orama.com/docs/orama-js/results-pinning) - [Facets](https://docs.orama.com/docs/orama-js/search/facets) - [Fields Boosting](https://docs.orama.com/docs/orama-js/search/fields-boosting) - [Typo Tolerance](https://docs.orama.com/docs/orama-js/search#typo-tolerance) - [Exact Match](https://docs.orama.com/docs/orama-js/search#exact-match) - [BM25](https://docs.orama.com/docs/orama-js/search/bm25) - [Stemming and tokenization in 30 languages](https://docs.orama.com/docs/orama-js/text-analysis/stemming) - [Plugin System](https://docs.orama.com/docs/orama-js/plugins) # Installation You can install Orama using `npm`, `yarn`, `pnpm`, `bun`: ```sh npm i @orama/orama ``` Or import it directly in a browser module: ```html <html> <body> <script type="module"> import { create, insert, search } from 'https://cdn.jsdelivr.net/npm/@orama/orama@latest/+esm' </script> </body> </html> ``` With Deno, you can just use the same CDN URL or use npm specifiers: ```js import { create, search, insert } from 'npm:@orama/orama' ``` Read the complete documentation at [https://docs.orama.com](https://docs.orama.com). # Orama Features <p align="center"> <img src="https://raw.githubusercontent.com/oramasearch/orama/refs/heads/main/misc/readme/features-dark.png#gh-dark-mode-only" /> <img src="https://raw.githubusercontent.com/oramasearch/orama/refs/heads/main/misc/readme/features-light.png#gh-light-mode-only" /> </p> # Usage Orama is quite simple to use. The first thing to do is to create a new database instance and set an indexing schema: ```js import { create, insert, remove, search, searchVector } from '@orama/orama' const db = create({ schema: { name: 'string', description: 'string', price: 'number', embedding: 'vector[1536]', // Vector size must be expressed during schema initialization meta: { rating: 'number', }, }, }) insert(db, { name: 'Noise cancelling headphones', description: 'Best noise cancelling headphones on the market', price: 99.99, embedding: [0.2432, 0.9431, 0.5322, 0.4234, ...], meta: { rating: 4.5 } }) const results = search(db, { term: 'Best headphones' }) // { // elapsed: { // raw: 21492, // formatted: '21μs', // }, // hits: [ // { // id: '41013877-56', // score: 0.925085832971998432, // document: { // name: 'Noise cancelling headphones', // description: 'Best noise cancelling headphones on the market', // price: 99.99, // embedding: [0.2432, 0.9431, 0.5322, 0.4234, ...], // meta: { // rating: 4.5 // } // } // } // ], // count: 1 // } ``` Orama currently supports 10 different data types: | Type | Description | Example | | ---------------- | --------------------------------------------------------------------------- | --------------------------------------------------------------------------- | | `string` | A string of characters. | `'Hello world'` | | `number` | A numeric value, either float or integer. | `42` | | `boolean` | A boolean value. | `true` | | `enum` | An enum value. | `'drama'` | | `geopoint` | A geopoint value. | `{ lat: 40.7128, lon: 74.0060 }` | | `string[]` | An array of strings. | `['red', 'green', 'blue']` | | `number[]` | An array of numbers. | `[42, 91, 28.5]` | | `boolean[]` | An array of booleans. | `[true, false, false]` | | `enum[]` | An array of enums. | `['comedy', 'action', 'romance']` | | `vector[<size>]` | A vector of numbers to perform vector search on. | `[0.403, 0.192, 0.830]` | # Vector and Hybrid Search Support Orama supports both vector and hybrid search by just setting `mode: 'vector'` when performing search. To perform this kind of search, you'll need to provide [text embeddings](https://en.wikipedia.org/wiki/Word_embedding) at search time: ```js import { create, insertMultiple, search } from '@orama/orama' const db = create({ schema: { title: 'string', embedding: 'vector[5]', // we are using a 5-dimensional vector. }, }); insertMultiple(db, [ { title: 'The Prestige', embedding: [0.938293, 0.284951, 0.348264, 0.948276, 0.56472] }, { title: 'Barbie', embedding: [0.192839, 0.028471, 0.284738, 0.937463, 0.092827] }, { title: 'Oppenheimer', embedding: [0.827391, 0.927381, 0.001982, 0.983821, 0.294841] }, ]) const results = search(db, { // Search mode. Can be 'vector', 'hybrid', or 'fulltext' mode: 'vector', vector: { // The vector (text embedding) to use for search value: [0.938292, 0.284961, 0.248264, 0.748276, 0.26472], // The schema property where Orama should compare embeddings property: 'embedding', }, // Minimum similarity to determine a match. Defaults to `0.8` similarity: 0.85, // Defaults to `false`. Setting to 'true' will return the embeddings in the response (which can be very large). includeVectors: true, }) ``` Have trouble generating embeddings for vector and hybrid search? Try our `@orama/plugin-embeddings` plugin! ```js import { create } from '@orama/orama' import { pluginEmbeddings } from '@orama/plugin-embeddings' import '@tensorflow/tfjs-node' // Or any other appropriate TensorflowJS backend, like @tensorflow/tfjs-backend-webgl const plugin = await pluginEmbeddings({ embeddings: { // Schema property used to store generated embeddings defaultProperty: 'embeddings', onInsert: { // Generate embeddings at insert-time generate: true, // properties to use for generating embeddings at insert time. // Will be concatenated to generate a unique embedding. properties: ['description'], verbose: true, } } }) const db = create({ schema: { description: 'string', // Orama generates 512-dimensions vectors. // When using @orama/plugin-embeddings, set the property where you want to store embeddings as `vector[512]`. embeddings: 'vector[512]' }, plugins: [plugin] }) // Orama will generate and store embeddings at insert-time! await insert(db, { description: 'Classroom Headphones Bulk 5 Pack, Student On Ear Color Varieties' }) await insert(db, { description: 'Kids Wired Headphones for School Students K-12' }) await insert(db, { description: 'Kids Headphones Bulk 5-Pack for K-12 School' }) await insert(db, { description: 'Bose QuietComfort Bluetooth Headphones' }) // Orama will also generate and use embeddings at search time when search mode is set to "vector" or "hybrid"! const searchResults = await search(db, { term: 'Headphones for 12th grade students', mode: 'vector', similarity: 0.75, }) ``` Want to use OpenAI embedding models? Use our [Secure Proxy](https://docs.orama.com/docs/orama-js/plugins/plugin-secure-proxy) plugin to call OpenAI from the client-side securely. # RAG and Chat Experiences with Orama Since `v3.0.0`, Orama allows you to create your own ChatGPT/Perplexity/SearchGPT-like experience. You will need to call the OpenAI APIs, so we strongly recommend using the [Secure Proxy Plugin](https://docs.orama.com/docs/orama-js/plugins/plugin-secure-proxy) to do that securely from your client side. It's free! ```js import { create, insert } from '@orama/orama' import { pluginSecureProxy } from '@orama/plugin-secure-proxy' const secureProxy = await pluginSecureProxy({ apiKey: 'my-api-key', defaultProperty: 'embeddings', models: { // The chat model to use to generate the chat answer chat: 'openai/gpt-4o-mini' } }) const db = create({ schema: { name: 'string' }, plugins: [secureProxy] }) insert(db, { name: 'John Doe' }) insert(db, { name: 'Jane Doe' }) const session = new AnswerSession(db, { // Customize the prompt for the system systemPrompt: 'You will get a name as context, please provide a greeting message', events: { // Log all state changes. Useful to reactively update a UI on a new message chunk, sources, etc. onStateChange: console.log, } }) const response = await session.ask({ term: 'john' }) console.log(response) // Hello, John Doe! How are you doing? ``` Read the complete [documentation](https://docs.orama.com/docs/orama-js/answer-engine). # Official Docs Read the complete documentation at [https://docs.orama.com/open-source](https://docs.orama.com/open-source). # Official Orama Plugins - [Plugin Embeddings](https://docs.orama.com/docs/orama-js/plugins/plugin-embeddings) - [Plugin Secure Proxy](https://docs.orama.com/docs/orama-js/plugins/plugin-secure-proxy) - [Plugin Analytics](https://docs.orama.com/docs/orama-js/plugins/plugin-analytics) - [Plugin Data Persistence](https://docs.orama.com/docs/orama-js/plugins/plugin-data-persistence) - [Plugin QPS](https://docs.orama.com/docs/orama-js/plugins/plugin-qps) - [Plugin PT15](https://docs.orama.com/docs/orama-js/plugins/plugin-pt15) - [Plugin Vitepress](https://docs.orama.com/docs/orama-js/plugins/plugin-vitepress) - [Plugin Docusaurus](https://docs.orama.com/docs/orama-js/plugins/plugin-docusaurus) - [Plugin Astro](https://docs.orama.com/docs/orama-js/plugins/plugin-astro) - [Plugin Nextra](https://docs.orama.com/docs/orama-js/plugins/plugin-nextra) Write your own plugin: [https://docs.orama.com/docs/orama-js/plugins/writing-your-own-plugins](https://docs.orama.com/docs/orama-js/plugins/writing-your-own-plugins) # License Orama is licensed under the [Apache 2.0](/LICENSE.md) license. <img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=16782f89-15fb-4e03-8e9c-2a06106542f7" />", Assign "at most 3 tags" to the expected json: {"id":"3560","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"