AI prompts
base on Python bindings for the Transformer models implemented in C/C++ using GGML library. # [CTransformers](https://github.com/marella/ctransformers) [![PyPI](https://img.shields.io/pypi/v/ctransformers)](https://pypi.org/project/ctransformers/) [![tests](https://github.com/marella/ctransformers/actions/workflows/tests.yml/badge.svg)](https://github.com/marella/ctransformers/actions/workflows/tests.yml) [![build](https://github.com/marella/ctransformers/actions/workflows/build.yml/badge.svg)](https://github.com/marella/ctransformers/actions/workflows/build.yml)
Python bindings for the Transformer models implemented in C/C++ using [GGML](https://github.com/ggerganov/ggml) library.
> Also see [ChatDocs](https://github.com/marella/chatdocs)
- [Supported Models](#supported-models)
- [Installation](#installation)
- [Usage](#usage)
- [🤗 Transformers](#transformers)
- [LangChain](#langchain)
- [GPU](#gpu)
- [GPTQ](#gptq)
- [Documentation](#documentation)
- [License](#license)
## Supported Models
| Models | Model Type | CUDA | Metal |
| :------------------ | ------------- | :--: | :---: |
| GPT-2 | `gpt2` | | |
| GPT-J, GPT4All-J | `gptj` | | |
| GPT-NeoX, StableLM | `gpt_neox` | | |
| Falcon | `falcon` | ✅ | |
| LLaMA, LLaMA 2 | `llama` | ✅ | ✅ |
| MPT | `mpt` | ✅ | |
| StarCoder, StarChat | `gpt_bigcode` | ✅ | |
| Dolly V2 | `dolly-v2` | | |
| Replit | `replit` | | |
## Installation
```sh
pip install ctransformers
```
## Usage
It provides a unified interface for all models:
```py
from ctransformers import AutoModelForCausalLM
llm = AutoModelForCausalLM.from_pretrained("/path/to/ggml-model.bin", model_type="gpt2")
print(llm("AI is going to"))
```
[Run in Google Colab](https://colab.research.google.com/drive/1GMhYMUAv_TyZkpfvUI1NirM8-9mCXQyL)
To stream the output, set `stream=True`:
```py
for text in llm("AI is going to", stream=True):
print(text, end="", flush=True)
```
You can load models from Hugging Face Hub directly:
```py
llm = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml")
```
If a model repo has multiple model files (`.bin` or `.gguf` files), specify a model file using:
```py
llm = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml", model_file="ggml-model.bin")
```
<a id="transformers"></a>
### 🤗 Transformers
> **Note:** This is an experimental feature and may change in the future.
To use it with 🤗 Transformers, create model and tokenizer using:
```py
from ctransformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml", hf=True)
tokenizer = AutoTokenizer.from_pretrained(model)
```
[Run in Google Colab](https://colab.research.google.com/drive/1FVSLfTJ2iBbQ1oU2Rqz0MkpJbaB_5Got)
You can use 🤗 Transformers text generation pipeline:
```py
from transformers import pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
print(pipe("AI is going to", max_new_tokens=256))
```
You can use 🤗 Transformers generation [parameters](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationConfig):
```py
pipe("AI is going to", max_new_tokens=256, do_sample=True, temperature=0.8, repetition_penalty=1.1)
```
You can use 🤗 Transformers tokenizers:
```py
from ctransformers import AutoModelForCausalLM
from transformers import AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("marella/gpt-2-ggml", hf=True) # Load model from GGML model repo.
tokenizer = AutoTokenizer.from_pretrained("gpt2") # Load tokenizer from original model repo.
```
### LangChain
It is integrated into LangChain. See [LangChain docs](https://python.langchain.com/docs/ecosystem/integrations/ctransformers).
### GPU
To run some of the model layers on GPU, set the `gpu_layers` parameter:
```py
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-GGML", gpu_layers=50)
```
[Run in Google Colab](https://colab.research.google.com/drive/1Ihn7iPCYiqlTotpkqa1tOhUIpJBrJ1Tp)
#### CUDA
Install CUDA libraries using:
```sh
pip install ctransformers[cuda]
```
#### ROCm
To enable ROCm support, install the `ctransformers` package using:
```sh
CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
```
#### Metal
To enable Metal support, install the `ctransformers` package using:
```sh
CT_METAL=1 pip install ctransformers --no-binary ctransformers
```
### GPTQ
> **Note:** This is an experimental feature and only LLaMA models are supported using [ExLlama](https://github.com/turboderp/exllama).
Install additional dependencies using:
```sh
pip install ctransformers[gptq]
```
Load a GPTQ model using:
```py
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-GPTQ")
```
[Run in Google Colab](https://colab.research.google.com/drive/1SzHslJ4CiycMOgrppqecj4VYCWFnyrN0)
> If model name or path doesn't contain the word `gptq` then specify `model_type="gptq"`.
It can also be used with LangChain. Low-level APIs are not fully supported.
## Documentation
<!-- API_DOCS -->
### Config
| Parameter | Type | Description | Default |
| :------------------- | :---------- | :-------------------------------------------------------------- | :------ |
| `top_k` | `int` | The top-k value to use for sampling. | `40` |
| `top_p` | `float` | The top-p value to use for sampling. | `0.95` |
| `temperature` | `float` | The temperature to use for sampling. | `0.8` |
| `repetition_penalty` | `float` | The repetition penalty to use for sampling. | `1.1` |
| `last_n_tokens` | `int` | The number of last tokens to use for repetition penalty. | `64` |
| `seed` | `int` | The seed value to use for sampling tokens. | `-1` |
| `max_new_tokens` | `int` | The maximum number of new tokens to generate. | `256` |
| `stop` | `List[str]` | A list of sequences to stop generation when encountered. | `None` |
| `stream` | `bool` | Whether to stream the generated text. | `False` |
| `reset` | `bool` | Whether to reset the model state before generating text. | `True` |
| `batch_size` | `int` | The batch size to use for evaluating tokens in a single prompt. | `8` |
| `threads` | `int` | The number of threads to use for evaluating tokens. | `-1` |
| `context_length` | `int` | The maximum context length to use. | `-1` |
| `gpu_layers` | `int` | The number of layers to run on GPU. | `0` |
> **Note:** Currently only LLaMA, MPT and Falcon models support the `context_length` parameter.
### <kbd>class</kbd> `AutoModelForCausalLM`
---
#### <kbd>classmethod</kbd> `AutoModelForCausalLM.from_pretrained`
```python
from_pretrained(
model_path_or_repo_id: str,
model_type: Optional[str] = None,
model_file: Optional[str] = None,
config: Optional[ctransformers.hub.AutoConfig] = None,
lib: Optional[str] = None,
local_files_only: bool = False,
revision: Optional[str] = None,
hf: bool = False,
**kwargs
) → LLM
```
Loads the language model from a local file or remote repo.
**Args:**
- <b>`model_path_or_repo_id`</b>: The path to a model file or directory or the name of a Hugging Face Hub model repo.
- <b>`model_type`</b>: The model type.
- <b>`model_file`</b>: The name of the model file in repo or directory.
- <b>`config`</b>: `AutoConfig` object.
- <b>`lib`</b>: The path to a shared library or one of `avx2`, `avx`, `basic`.
- <b>`local_files_only`</b>: Whether or not to only look at local files (i.e., do not try to download the model).
- <b>`revision`</b>: The specific model version to use. It can be a branch name, a tag name, or a commit id.
- <b>`hf`</b>: Whether to create a Hugging Face Transformers model.
**Returns:**
`LLM` object.
### <kbd>class</kbd> `LLM`
### <kbd>method</kbd> `LLM.__init__`
```python
__init__(
model_path: str,
model_type: Optional[str] = None,
config: Optional[ctransformers.llm.Config] = None,
lib: Optional[str] = None
)
```
Loads the language model from a local file.
**Args:**
- <b>`model_path`</b>: The path to a model file.
- <b>`model_type`</b>: The model type.
- <b>`config`</b>: `Config` object.
- <b>`lib`</b>: The path to a shared library or one of `avx2`, `avx`, `basic`.
---
##### <kbd>property</kbd> LLM.bos_token_id
The beginning-of-sequence token.
---
##### <kbd>property</kbd> LLM.config
The config object.
---
##### <kbd>property</kbd> LLM.context_length
The context length of model.
---
##### <kbd>property</kbd> LLM.embeddings
The input embeddings.
---
##### <kbd>property</kbd> LLM.eos_token_id
The end-of-sequence token.
---
##### <kbd>property</kbd> LLM.logits
The unnormalized log probabilities.
---
##### <kbd>property</kbd> LLM.model_path
The path to the model file.
---
##### <kbd>property</kbd> LLM.model_type
The model type.
---
##### <kbd>property</kbd> LLM.pad_token_id
The padding token.
---
##### <kbd>property</kbd> LLM.vocab_size
The number of tokens in vocabulary.
---
#### <kbd>method</kbd> `LLM.detokenize`
```python
detokenize(tokens: Sequence[int], decode: bool = True) → Union[str, bytes]
```
Converts a list of tokens to text.
**Args:**
- <b>`tokens`</b>: The list of tokens.
- <b>`decode`</b>: Whether to decode the text as UTF-8 string.
**Returns:**
The combined text of all tokens.
---
#### <kbd>method</kbd> `LLM.embed`
```python
embed(
input: Union[str, Sequence[int]],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → List[float]
```
Computes embeddings for a text or list of tokens.
> **Note:** Currently only LLaMA and Falcon models support embeddings.
**Args:**
- <b>`input`</b>: The input text or list of tokens to get embeddings for.
- <b>`batch_size`</b>: The batch size to use for evaluating tokens in a single prompt. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
**Returns:**
The input embeddings.
---
#### <kbd>method</kbd> `LLM.eval`
```python
eval(
tokens: Sequence[int],
batch_size: Optional[int] = None,
threads: Optional[int] = None
) → None
```
Evaluates a list of tokens.
**Args:**
- <b>`tokens`</b>: The list of tokens to evaluate.
- <b>`batch_size`</b>: The batch size to use for evaluating tokens in a single prompt. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
---
#### <kbd>method</kbd> `LLM.generate`
```python
generate(
tokens: Sequence[int],
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
reset: Optional[bool] = None
) → Generator[int, NoneType, NoneType]
```
Generates new tokens from a list of tokens.
**Args:**
- <b>`tokens`</b>: The list of tokens to generate tokens from.
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
- <b>`batch_size`</b>: The batch size to use for evaluating tokens in a single prompt. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`
**Returns:**
The generated tokens.
---
#### <kbd>method</kbd> `LLM.is_eos_token`
```python
is_eos_token(token: int) → bool
```
Checks if a token is an end-of-sequence token.
**Args:**
- <b>`token`</b>: The token to check.
**Returns:**
`True` if the token is an end-of-sequence token else `False`.
---
#### <kbd>method</kbd> `LLM.prepare_inputs_for_generation`
```python
prepare_inputs_for_generation(
tokens: Sequence[int],
reset: Optional[bool] = None
) → Sequence[int]
```
Removes input tokens that are evaluated in the past and updates the LLM context.
**Args:**
- <b>`tokens`</b>: The list of input tokens.
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`
**Returns:**
The list of tokens to evaluate.
---
#### <kbd>method</kbd> `LLM.reset`
```python
reset() → None
```
Deprecated since 0.2.27.
---
#### <kbd>method</kbd> `LLM.sample`
```python
sample(
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None
) → int
```
Samples a token from the model.
**Args:**
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
**Returns:**
The sampled token.
---
#### <kbd>method</kbd> `LLM.tokenize`
```python
tokenize(text: str, add_bos_token: Optional[bool] = None) → List[int]
```
Converts a text into list of tokens.
**Args:**
- <b>`text`</b>: The text to tokenize.
- <b>`add_bos_token`</b>: Whether to add the beginning-of-sequence token.
**Returns:**
The list of tokens.
---
#### <kbd>method</kbd> `LLM.__call__`
```python
__call__(
prompt: str,
max_new_tokens: Optional[int] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
temperature: Optional[float] = None,
repetition_penalty: Optional[float] = None,
last_n_tokens: Optional[int] = None,
seed: Optional[int] = None,
batch_size: Optional[int] = None,
threads: Optional[int] = None,
stop: Optional[Sequence[str]] = None,
stream: Optional[bool] = None,
reset: Optional[bool] = None
) → Union[str, Generator[str, NoneType, NoneType]]
```
Generates text from a prompt.
**Args:**
- <b>`prompt`</b>: The prompt to generate text from.
- <b>`max_new_tokens`</b>: The maximum number of new tokens to generate. Default: `256`
- <b>`top_k`</b>: The top-k value to use for sampling. Default: `40`
- <b>`top_p`</b>: The top-p value to use for sampling. Default: `0.95`
- <b>`temperature`</b>: The temperature to use for sampling. Default: `0.8`
- <b>`repetition_penalty`</b>: The repetition penalty to use for sampling. Default: `1.1`
- <b>`last_n_tokens`</b>: The number of last tokens to use for repetition penalty. Default: `64`
- <b>`seed`</b>: The seed value to use for sampling tokens. Default: `-1`
- <b>`batch_size`</b>: The batch size to use for evaluating tokens in a single prompt. Default: `8`
- <b>`threads`</b>: The number of threads to use for evaluating tokens. Default: `-1`
- <b>`stop`</b>: A list of sequences to stop generation when encountered. Default: `None`
- <b>`stream`</b>: Whether to stream the generated text. Default: `False`
- <b>`reset`</b>: Whether to reset the model state before generating text. Default: `True`
**Returns:**
The generated text.
<!-- API_DOCS -->
## License
[MIT](https://github.com/marella/ctransformers/blob/main/LICENSE)
", Assign "at most 3 tags" to the expected json: {"id":"3846","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"