AI prompts
base on The largest collection of PyTorch image encoders / backbones. Including train, eval, inference, export scripts, and pretrained weights -- ResNet, ResNeXT, EfficientNet, NFNet, Vision Transformer (ViT), MobileNetV4, MobileNet-V3 & V2, RegNet, DPN, CSPNet, Swin Transformer, MaxViT, CoAtNet, ConvNeXt, and more # PyTorch Image Models
- [What's New](#whats-new)
- [Introduction](#introduction)
- [Models](#models)
- [Features](#features)
- [Results](#results)
- [Getting Started (Documentation)](#getting-started-documentation)
- [Train, Validation, Inference Scripts](#train-validation-inference-scripts)
- [Awesome PyTorch Resources](#awesome-pytorch-resources)
- [Licenses](#licenses)
- [Citing](#citing)
## What's New
## Nov 28, 2024
* More optimizers
* Add MARS optimizer (https://arxiv.org/abs/2411.10438, https://github.com/AGI-Arena/MARS)
* Add LaProp optimizer (https://arxiv.org/abs/2002.04839, https://github.com/Z-T-WANG/LaProp-Optimizer)
* Add masking from 'Cautious Optimizers' (https://arxiv.org/abs/2411.16085, https://github.com/kyleliang919/C-Optim) to Adafactor, Adafactor Big Vision, AdamW (legacy), Adopt, Lamb, LaProp, Lion, NadamW, RMSPropTF, SGDW
* Cleanup some docstrings and type annotations re optimizers and factory
* Add MobileNet-V4 Conv Medium models pretrained on in12k and fine-tuned in1k @ 384x384
* https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k
* https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k
* https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k
* https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k
* Add small cs3darknet, quite good for the speed
* https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k
## Nov 12, 2024
* Optimizer factory refactor
* New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits
* Add `list_optimizers`, `get_optimizer_class`, `get_optimizer_info` to reworked `create_optimizer_v2` fn to explore optimizers, get info or class
* deprecate `optim.optim_factory`, move fns to `optim/_optim_factory.py` and `optim/_param_groups.py` and encourage import via `timm.optim`
* Add Adopt (https://github.com/iShohei220/adopt) optimizer
* Add 'Big Vision' variant of Adafactor (https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer
* Fix original Adafactor to pick better factorization dims for convolutions
* Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit
* dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks https://github.com/wojtke
*
## Oct 31, 2024
Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat
## Oct 19, 2024
* Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from [MengqingCao](https://github.com/MengqingCao) that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked.
## Oct 16, 2024
* Fix error on importing from deprecated path `timm.models.registry`, increased priority of existing deprecation warnings to be visible
* Port weights of InternViT-300M (https://huggingface.co/OpenGVLab/InternViT-300M-448px) to `timm` as `vit_intern300m_patch14_448`
### Oct 14, 2024
* Pre-activation (ResNetV2) version of 18/18d/34/34d ResNet model defs added by request (weights pending)
* Release 1.0.10
### Oct 11, 2024
* MambaOut (https://github.com/yuweihao/MambaOut) model & weights added. A cheeky take on SSM vision models w/o the SSM (essentially ConvNeXt w/ gating). A mix of original weights + custom variations & weights.
|model |img_size|top1 |top5 |param_count|
|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------|
|[mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k)|384 |87.506|98.428|101.66 |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288 |86.912|98.236|101.66 |
|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224 |86.632|98.156|101.66 |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |288 |84.974|97.332|86.48 |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |288 |84.962|97.208|94.45 |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |288 |84.832|97.27 |88.83 |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |288 |84.72 |96.93 |84.81 |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |288 |84.598|97.098|48.5 |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |288 |84.5 |96.974|48.49 |
|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |224 |84.454|96.864|94.45 |
|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |224 |84.434|96.958|86.48 |
|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |224 |84.362|96.952|88.83 |
|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |224 |84.168|96.68 |84.81 |
|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |224 |84.086|96.63 |48.49 |
|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |224 |84.024|96.752|48.5 |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |288 |83.448|96.538|26.55 |
|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |224 |82.736|96.1 |26.55 |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |288 |81.054|95.718|9.14 |
|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |224 |79.986|94.986|9.14 |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |288 |79.848|95.14 |7.3 |
|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |224 |78.87 |94.408|7.3 |
* SigLIP SO400M ViT fine-tunes on ImageNet-1k @ 378x378, added 378x378 option for existing SigLIP 384x384 models
* [vit_so400m_patch14_siglip_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_378.webli_ft_in1k) - 89.42 top-1
* [vit_so400m_patch14_siglip_gap_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_gap_378.webli_ft_in1k) - 89.03
* SigLIP SO400M ViT encoder from recent multi-lingual (i18n) variant, patch16 @ 256x256 (https://huggingface.co/timm/ViT-SO400M-16-SigLIP-i18n-256). OpenCLIP update pending.
* Add two ConvNeXt 'Zepto' models & weights (one w/ overlapped stem and one w/ patch stem). Uses RMSNorm, smaller than previous 'Atto', 2.2M params.
* [convnext_zepto_rms_ols.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms_ols.ra4_e3600_r224_in1k) - 73.20 top-1 @ 224
* [convnext_zepto_rms.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms.ra4_e3600_r224_in1k) - 72.81 @ 224
### Sept 2024
* Add a suite of tiny test models for improved unit tests and niche low-resource applications (https://huggingface.co/blog/rwightman/timm-tiny-test)
* Add MobileNetV4-Conv-Small (0.5x) model (https://huggingface.co/posts/rwightman/793053396198664)
* [mobilenetv4_conv_small_050.e3000_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small_050.e3000_r224_in1k) - 65.81 top-1 @ 256, 64.76 @ 224
* Add MobileNetV3-Large variants trained with MNV4 Small recipe
* [mobilenetv3_large_150d.ra4_e3600_r256_in1k](http://hf.co/timm/mobilenetv3_large_150d.ra4_e3600_r256_in1k) - 81.81 @ 320, 80.94 @ 256
* [mobilenetv3_large_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv3_large_100.ra4_e3600_r224_in1k) - 77.16 @ 256, 76.31 @ 224
### Aug 21, 2024
* Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models
| model | top1 | top5 | param_count | img_size |
| -------------------------------------------------- | ------ | ------ | ----------- | -------- |
| [vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 87.438 | 98.256 | 64.11 | 384 |
| [vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 86.608 | 97.934 | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 86.594 | 98.02 | 60.4 | 384 |
| [vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 85.734 | 97.61 | 60.4 | 256 |
* MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe
| model | top1 | top5 | param_count | img_size |
|--------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|----------|
| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k) | 81.838 | 95.922 | 25.58 | 288 |
| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k) | 81.440 | 95.700 | 7.79 | 288 |
| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k) | 80.952 | 95.384 | 25.58 | 224 |
| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k) | 80.406 | 95.152 | 7.79 | 240 |
| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k) | 77.600 | 93.804 | 6.27 | 256 |
| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k) | 76.924 | 93.234 | 6.27 | 224 |
* Add SAM2 (HieraDet) backbone arch & weight loading support
* Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k
|model |top1 |top5 |param_count|
|---------------------------------|------|------|-----------|
|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k |84.912|97.260|35.01 |
|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01 |
### Aug 8, 2024
* Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225)
### July 28, 2024
* Add `mobilenet_edgetpu_v2_m` weights w/ `ra4` mnv4-small based recipe. 80.1% top-1 @ 224 and 80.7 @ 256.
* Release 1.0.8
### July 26, 2024
* More MobileNet-v4 weights, ImageNet-12k pretrain w/ fine-tunes, and anti-aliased ConvLarge models
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.99 |15.01 |97.294|2.706 |32.59 |544 |
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.772|15.228 |97.344|2.656 |32.59 |480 |
| [mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k)|84.64 |15.36 |97.114|2.886 |32.59 |448 |
| [mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e230_r384_in12k_ft_in1k)|84.314|15.686 |97.102|2.898 |32.59 |384 |
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.824|16.176 |96.734|3.266 |32.59 |480 |
| [mobilenetv4_conv_aa_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_aa_large.e600_r384_in1k) |83.244|16.756 |96.392|3.608 |32.59 |384 |
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.99 |17.01 |96.67 |3.33 |11.07 |320 |
| [mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e200_r256_in12k_ft_in1k)|82.364|17.636 |96.256|3.744 |11.07 |256 |
* Impressive MobileNet-V1 and EfficientNet-B0 baseline challenges (https://huggingface.co/blog/rwightman/mobilenet-baselines)
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |79.364|20.636 |94.754|5.246 |5.29 |256 |
| [efficientnet_b0.ra4_e3600_r224_in1k](http://hf.co/timm/efficientnet_b0.ra4_e3600_r224_in1k) |78.584|21.416 |94.338|5.662 |5.29 |224 |
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |76.596|23.404 |93.272|6.728 |5.28 |256 |
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |76.094|23.906 |93.004|6.996 |4.23 |256 |
| [mobilenetv1_100h.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100h.ra4_e3600_r224_in1k) |75.662|24.338 |92.504|7.496 |5.28 |224 |
| [mobilenetv1_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_100.ra4_e3600_r224_in1k) |75.382|24.618 |92.312|7.688 |4.23 |224 |
* Prototype of `set_input_size()` added to vit and swin v1/v2 models to allow changing image size, patch size, window size after model creation.
* Improved support in swin for different size handling, in addition to `set_input_size`, `always_partition` and `strict_img_size` args have been added to `__init__` to allow more flexible input size constraints
* Fix out of order indices info for intermediate 'Getter' feature wrapper, check out or range indices for same.
* Add several `tiny` < .5M param models for testing that are actually trained on ImageNet-1k
|model |top1 |top1_err|top5 |top5_err|param_count|img_size|crop_pct|
|----------------------------|------|--------|------|--------|-----------|--------|--------|
|test_efficientnet.r160_in1k |47.156|52.844 |71.726|28.274 |0.36 |192 |1.0 |
|test_byobnet.r160_in1k |46.698|53.302 |71.674|28.326 |0.46 |192 |1.0 |
|test_efficientnet.r160_in1k |46.426|53.574 |70.928|29.072 |0.36 |160 |0.875 |
|test_byobnet.r160_in1k |45.378|54.622 |70.572|29.428 |0.46 |160 |0.875 |
|test_vit.r160_in1k|42.0 |58.0 |68.664|31.336 |0.37 |192 |1.0 |
|test_vit.r160_in1k|40.822|59.178 |67.212|32.788 |0.37 |160 |0.875 |
* Fix vit reg token init, thanks [Promisery](https://github.com/Promisery)
* Other misc fixes
### June 24, 2024
* 3 more MobileNetV4 hyrid weights with different MQA weight init scheme
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |84.356|15.644 |96.892 |3.108 |37.76 |448 |
| [mobilenetv4_hybrid_large.ix_e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.ix_e600_r384_in1k) |83.990|16.010 |96.702 |3.298 |37.76 |384 |
| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |83.394|16.606 |96.760|3.240 |11.07 |448 |
| [mobilenetv4_hybrid_medium.ix_e550_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r384_in1k) |82.968|17.032 |96.474|3.526 |11.07 |384 |
| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |82.492|17.508 |96.278|3.722 |11.07 |320 |
| [mobilenetv4_hybrid_medium.ix_e550_r256_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.ix_e550_r256_in1k) |81.446|18.554 |95.704|4.296 |11.07 |256 |
* florence2 weight loading in DaViT model
### June 12, 2024
* MobileNetV4 models and initial set of `timm` trained weights added:
| model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|--------------------------------------------------------------------------------------------------|------|--------|------|--------|-----------|--------|
| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |84.266|15.734 |96.936 |3.064 |37.76 |448 |
| [mobilenetv4_hybrid_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_hybrid_large.e600_r384_in1k) |83.800|16.200 |96.770 |3.230 |37.76 |384 |
| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |83.392|16.608 |96.622 |3.378 |32.59 |448 |
| [mobilenetv4_conv_large.e600_r384_in1k](http://hf.co/timm/mobilenetv4_conv_large.e600_r384_in1k) |82.952|17.048 |96.266 |3.734 |32.59 |384 |
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |82.674|17.326 |96.31 |3.69 |32.59 |320 |
| [mobilenetv4_conv_large.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_large.e500_r256_in1k) |81.862|18.138 |95.69 |4.31 |32.59 |256 |
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |81.276|18.724 |95.742|4.258 |11.07 |256 |
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |80.858|19.142 |95.768|4.232 |9.72 |320 |
| [mobilenetv4_hybrid_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_hybrid_medium.e500_r224_in1k) |80.442|19.558 |95.38 |4.62 |11.07 |224 |
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |80.142|19.858 |95.298|4.702 |9.72 |256 |
| [mobilenetv4_conv_medium.e500_r256_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r256_in1k) |79.928|20.072 |95.184|4.816 |9.72 |256 |
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.808|20.192 |95.186|4.814 |9.72 |256 |
| [mobilenetv4_conv_blur_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k) |79.438|20.562 |94.932|5.068 |9.72 |224 |
| [mobilenetv4_conv_medium.e500_r224_in1k](http://hf.co/timm/mobilenetv4_conv_medium.e500_r224_in1k) |79.094|20.906 |94.77 |5.23 |9.72 |224 |
| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |74.616|25.384 |92.072|7.928 |3.77 |256 |
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |74.292|25.708 |92.116|7.884 |3.77 |256 |
| [mobilenetv4_conv_small.e2400_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e2400_r224_in1k) |73.756|26.244 |91.422|8.578 |3.77 |224 |
| [mobilenetv4_conv_small.e1200_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small.e1200_r224_in1k) |73.454|26.546 |91.34 |8.66 |3.77 |224 |
* Apple MobileCLIP (https://arxiv.org/pdf/2311.17049, FastViT and ViT-B) image tower model support & weights added (part of OpenCLIP support).
* ViTamin (https://arxiv.org/abs/2404.02132) CLIP image tower model & weights added (part of OpenCLIP support).
* OpenAI CLIP Modified ResNet image tower modelling & weight support (via ByobNet). Refactor AttentionPool2d.
### May 14, 2024
* Support loading PaliGemma jax weights into SigLIP ViT models with average pooling.
* Add Hiera models from Meta (https://github.com/facebookresearch/hiera).
* Add `normalize=` flag for transorms, return non-normalized torch.Tensor with original dytpe (for `chug`)
* Version 1.0.3 release
### May 11, 2024
* `Searching for Better ViT Baselines (For the GPU Poor)` weights and vit variants released. Exploring model shapes between Tiny and Base.
| model | top1 | top5 | param_count | img_size |
| -------------------------------------------------- | ------ | ------ | ----------- | -------- |
| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 86.202 | 97.874 | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k_ft_in1k) | 85.418 | 97.48 | 60.4 | 256 |
| [vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_mediumd_patch16_rope_reg1_gap_256.sbb_in1k) | 84.322 | 96.812 | 63.95 | 256 |
| [vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_rope_reg4_gap_256.sbb_in1k) | 83.906 | 96.684 | 60.23 | 256 |
| [vit_base_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_base_patch16_rope_reg1_gap_256.sbb_in1k) | 83.866 | 96.67 | 86.43 | 256 |
| [vit_medium_patch16_rope_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_rope_reg1_gap_256.sbb_in1k) | 83.81 | 96.824 | 38.74 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in1k) | 83.706 | 96.616 | 60.4 | 256 |
| [vit_betwixt_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg1_gap_256.sbb_in1k) | 83.628 | 96.544 | 60.4 | 256 |
| [vit_medium_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg4_gap_256.sbb_in1k) | 83.47 | 96.622 | 38.88 | 256 |
| [vit_medium_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_medium_patch16_reg1_gap_256.sbb_in1k) | 83.462 | 96.548 | 38.88 | 256 |
| [vit_little_patch16_reg4_gap_256.sbb_in1k](https://huggingface.co/timm/vit_little_patch16_reg4_gap_256.sbb_in1k) | 82.514 | 96.262 | 22.52 | 256 |
| [vit_wee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_wee_patch16_reg1_gap_256.sbb_in1k) | 80.256 | 95.360 | 13.42 | 256 |
| [vit_pwee_patch16_reg1_gap_256.sbb_in1k](https://huggingface.co/timm/vit_pwee_patch16_reg1_gap_256.sbb_in1k) | 80.072 | 95.136 | 15.25 | 256 |
| [vit_mediumd_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 64.11 | 256 |
| [vit_betwixt_patch16_reg4_gap_256.sbb_in12k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb_in12k) | N/A | N/A | 60.4 | 256 |
* AttentionExtract helper added to extract attention maps from `timm` models. See example in https://github.com/huggingface/pytorch-image-models/discussions/1232#discussioncomment-9320949
* `forward_intermediates()` API refined and added to more models including some ConvNets that have other extraction methods.
* 1017 of 1047 model architectures support `features_only=True` feature extraction. Remaining 34 architectures can be supported but based on priority requests.
* Remove torch.jit.script annotated functions including old JIT activations. Conflict with dynamo and dynamo does a much better job when used.
### April 11, 2024
* Prepping for a long overdue 1.0 release, things have been stable for a while now.
* Significant feature that's been missing for a while, `features_only=True` support for ViT models with flat hidden states or non-std module layouts (so far covering `'vit_*', 'twins_*', 'deit*', 'beit*', 'mvitv2*', 'eva*', 'samvit_*', 'flexivit*'`)
* Above feature support achieved through a new `forward_intermediates()` API that can be used with a feature wrapping module or direclty.
```python
model = timm.create_model('vit_base_patch16_224')
final_feat, intermediates = model.forward_intermediates(input)
output = model.forward_head(final_feat) # pooling + classifier head
print(final_feat.shape)
torch.Size([2, 197, 768])
for f in intermediates:
print(f.shape)
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
torch.Size([2, 768, 14, 14])
print(output.shape)
torch.Size([2, 1000])
```
```python
model = timm.create_model('eva02_base_patch16_clip_224', pretrained=True, img_size=512, features_only=True, out_indices=(-3, -2,))
output = model(torch.randn(2, 3, 512, 512))
for o in output:
print(o.shape)
torch.Size([2, 768, 32, 32])
torch.Size([2, 768, 32, 32])
```
* TinyCLIP vision tower weights added, thx [Thien Tran](https://github.com/gau-nernst)
### Feb 19, 2024
* Next-ViT models added. Adapted from https://github.com/bytedance/Next-ViT
* HGNet and PP-HGNetV2 models added. Adapted from https://github.com/PaddlePaddle/PaddleClas by [SeeFun](https://github.com/seefun)
* Removed setup.py, moved to pyproject.toml based build supported by PDM
* Add updated model EMA impl using _for_each for less overhead
* Support device args in train script for non GPU devices
* Other misc fixes and small additions
* Min supported Python version increased to 3.8
* Release 0.9.16
### Jan 8, 2024
Datasets & transform refactoring
* HuggingFace streaming (iterable) dataset support (`--dataset hfids:org/dataset`)
* Webdataset wrapper tweaks for improved split info fetching, can auto fetch splits from supported HF hub webdataset
* Tested HF `datasets` and webdataset wrapper streaming from HF hub with recent `timm` ImageNet uploads to https://huggingface.co/timm
* Make input & target column/field keys consistent across datasets and pass via args
* Full monochrome support when using e:g: `--input-size 1 224 224` or `--in-chans 1`, sets PIL image conversion appropriately in dataset
* Improved several alternate crop & resize transforms (ResizeKeepRatio, RandomCropOrPad, etc) for use in PixParse document AI project
* Add SimCLR style color jitter prob along with grayscale and gaussian blur options to augmentations and args
* Allow train without validation set (`--val-split ''`) in train script
* Add `--bce-sum` (sum over class dim) and `--bce-pos-weight` (positive weighting) args for training as they're common BCE loss tweaks I was often hard coding
### Nov 23, 2023
* Added EfficientViT-Large models, thanks [SeeFun](https://github.com/seefun)
* Fix Python 3.7 compat, will be dropping support for it soon
* Other misc fixes
* Release 0.9.12
### Nov 20, 2023
* Added significant flexibility for Hugging Face Hub based timm models via `model_args` config entry. `model_args` will be passed as kwargs through to models on creation.
* See example at https://huggingface.co/gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k/blob/main/config.json
* Usage: https://github.com/huggingface/pytorch-image-models/discussions/2035
* Updated imagenet eval and test set csv files with latest models
* `vision_transformer.py` typing and doc cleanup by [Laureηt](https://github.com/Laurent2916)
* 0.9.11 release
### Nov 3, 2023
* [DFN (Data Filtering Networks)](https://huggingface.co/papers/2309.17425) and [MetaCLIP](https://huggingface.co/papers/2309.16671) ViT weights added
* DINOv2 'register' ViT model weights added (https://huggingface.co/papers/2309.16588, https://huggingface.co/papers/2304.07193)
* Add `quickgelu` ViT variants for OpenAI, DFN, MetaCLIP weights that use it (less efficient)
* Improved typing added to ResNet, MobileNet-v3 thanks to [Aryan](https://github.com/a-r-r-o-w)
* ImageNet-12k fine-tuned (from LAION-2B CLIP) `convnext_xxlarge`
* 0.9.9 release
### Oct 20, 2023
* [SigLIP](https://huggingface.co/papers/2303.15343) image tower weights supported in `vision_transformer.py`.
* Great potential for fine-tune and downstream feature use.
* Experimental 'register' support in vit models as per [Vision Transformers Need Registers](https://huggingface.co/papers/2309.16588)
* Updated RepViT with new weight release. Thanks [wangao](https://github.com/jameslahm)
* Add patch resizing support (on pretrained weight load) to Swin models
* 0.9.8 release pending
### Sep 1, 2023
* TinyViT added by [SeeFun](https://github.com/seefun)
* Fix EfficientViT (MIT) to use torch.autocast so it works back to PT 1.10
* 0.9.7 release
## Introduction
Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results.
The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything.
## Features
### Models
All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated.
* Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723
* BEiT - https://arxiv.org/abs/2106.08254
* Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370
* Bottleneck Transformers - https://arxiv.org/abs/2101.11605
* CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239
* CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399
* CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803
* ConvNeXt - https://arxiv.org/abs/2201.03545
* ConvNeXt-V2 - http://arxiv.org/abs/2301.00808
* ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697
* CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929
* DeiT - https://arxiv.org/abs/2012.12877
* DeiT-III - https://arxiv.org/pdf/2204.07118.pdf
* DenseNet - https://arxiv.org/abs/1608.06993
* DLA - https://arxiv.org/abs/1707.06484
* DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629
* EdgeNeXt - https://arxiv.org/abs/2206.10589
* EfficientFormer - https://arxiv.org/abs/2206.01191
* EfficientNet (MBConvNet Family)
* EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252
* EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665
* EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946
* EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
* EfficientNet V2 - https://arxiv.org/abs/2104.00298
* FBNet-C - https://arxiv.org/abs/1812.03443
* MixNet - https://arxiv.org/abs/1907.09595
* MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626
* MobileNet-V2 - https://arxiv.org/abs/1801.04381
* Single-Path NAS - https://arxiv.org/abs/1904.02877
* TinyNet - https://arxiv.org/abs/2010.14819
* EfficientViT (MIT) - https://arxiv.org/abs/2205.14756
* EfficientViT (MSRA) - https://arxiv.org/abs/2305.07027
* EVA - https://arxiv.org/abs/2211.07636
* EVA-02 - https://arxiv.org/abs/2303.11331
* FastViT - https://arxiv.org/abs/2303.14189
* FlexiViT - https://arxiv.org/abs/2212.08013
* FocalNet (Focal Modulation Networks) - https://arxiv.org/abs/2203.11926
* GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959
* GhostNet - https://arxiv.org/abs/1911.11907
* GhostNet-V2 - https://arxiv.org/abs/2211.12905
* gMLP - https://arxiv.org/abs/2105.08050
* GPU-Efficient Networks - https://arxiv.org/abs/2006.14090
* Halo Nets - https://arxiv.org/abs/2103.12731
* HGNet / HGNet-V2 - TBD
* HRNet - https://arxiv.org/abs/1908.07919
* InceptionNeXt - https://arxiv.org/abs/2303.16900
* Inception-V3 - https://arxiv.org/abs/1512.00567
* Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261
* Lambda Networks - https://arxiv.org/abs/2102.08602
* LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136
* MambaOut - https://arxiv.org/abs/2405.07992
* MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697
* MetaFormer (PoolFormer-v2, ConvFormer, CAFormer) - https://arxiv.org/abs/2210.13452
* MLP-Mixer - https://arxiv.org/abs/2105.01601
* MobileCLIP - https://arxiv.org/abs/2311.17049
* MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244
* FBNet-V3 - https://arxiv.org/abs/2006.02049
* HardCoRe-NAS - https://arxiv.org/abs/2102.11646
* LCNet - https://arxiv.org/abs/2109.15099
* MobileNetV4 - https://arxiv.org/abs/2404.10518
* MobileOne - https://arxiv.org/abs/2206.04040
* MobileViT - https://arxiv.org/abs/2110.02178
* MobileViT-V2 - https://arxiv.org/abs/2206.02680
* MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526
* NASNet-A - https://arxiv.org/abs/1707.07012
* NesT - https://arxiv.org/abs/2105.12723
* Next-ViT - https://arxiv.org/abs/2207.05501
* NFNet-F - https://arxiv.org/abs/2102.06171
* NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692
* PNasNet - https://arxiv.org/abs/1712.00559
* PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418
* Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302
* PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797
* RDNet (DenseNets Reloaded) - https://arxiv.org/abs/2403.19588
* RegNet - https://arxiv.org/abs/2003.13678
* RegNetZ - https://arxiv.org/abs/2103.06877
* RepVGG - https://arxiv.org/abs/2101.03697
* RepGhostNet - https://arxiv.org/abs/2211.06088
* RepViT - https://arxiv.org/abs/2307.09283
* ResMLP - https://arxiv.org/abs/2105.03404
* ResNet/ResNeXt
* ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385
* ResNeXt - https://arxiv.org/abs/1611.05431
* 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187
* Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932
* Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546
* ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4
* Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507
* ResNet-RS - https://arxiv.org/abs/2103.07579
* Res2Net - https://arxiv.org/abs/1904.01169
* ResNeSt - https://arxiv.org/abs/2004.08955
* ReXNet - https://arxiv.org/abs/2007.00992
* SelecSLS - https://arxiv.org/abs/1907.00837
* Selective Kernel Networks - https://arxiv.org/abs/1903.06586
* Sequencer2D - https://arxiv.org/abs/2205.01972
* Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725
* Swin Transformer - https://arxiv.org/abs/2103.14030
* Swin Transformer V2 - https://arxiv.org/abs/2111.09883
* Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112
* TResNet - https://arxiv.org/abs/2003.13630
* Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf
* Visformer - https://arxiv.org/abs/2104.12533
* Vision Transformer - https://arxiv.org/abs/2010.11929
* ViTamin - https://arxiv.org/abs/2404.02132
* VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112
* VovNet V2 and V1 - https://arxiv.org/abs/1911.06667
* Xception - https://arxiv.org/abs/1610.02357
* Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611
* Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611
* XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681
### Optimizers
To see full list of optimizers w/ descriptions: `timm.optim.list_optimizers(with_description=True)`
Included optimizers available via `timm.optim.create_optimizer_v2` factory method:
* `adabelief` an implementation of AdaBelief adapted from https://github.com/juntang-zhuang/Adabelief-Optimizer - https://arxiv.org/abs/2010.07468
* `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) - https://arxiv.org/abs/1804.04235
* `adafactorbv` adapted from [Big Vision](https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) - https://arxiv.org/abs/2106.04560
* `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) - https://arxiv.org/abs/2006.00719
* `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) - https://arxiv.org/abs/2006.08217
* `adan` an implementation of Adan adapted from https://github.com/sail-sg/Adan - https://arxiv.org/abs/2208.06677
* `adopt` ADOPT adapted from https://github.com/iShohei220/adopt - https://arxiv.org/abs/2411.02853
* `lamb` an implementation of Lamb and LambC (w/ trust-clipping) cleaned up and modified to support use with XLA - https://arxiv.org/abs/1904.00962
* `laprop` optimizer from https://github.com/Z-T-WANG/LaProp-Optimizer - https://arxiv.org/abs/2002.04839
* `lars` an implementation of LARS and LARC (w/ trust-clipping) - https://arxiv.org/abs/1708.03888
* `lion` and implementation of Lion adapted from https://github.com/google/automl/tree/master/lion - https://arxiv.org/abs/2302.06675
* `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) - https://arxiv.org/abs/1907.08610
* `madgrad` an implementation of MADGRAD adapted from https://github.com/facebookresearch/madgrad - https://arxiv.org/abs/2101.11075
* `mars` MARS optimizer from https://github.com/AGI-Arena/MARS - https://arxiv.org/abs/2411.10438
* `nadam` an implementation of Adam w/ Nesterov momentum
* `nadamw` an impementation of AdamW (Adam w/ decoupled weight-decay) w/ Nesterov momentum. A simplified impl based on https://github.com/mlcommons/algorithmic-efficiency
* `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) - https://arxiv.org/abs/1905.11286
* `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) - https://arxiv.org/abs/1908.03265
* `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour
* `sgdw` and implementation of SGD w/ decoupled weight-decay
* `fused<name>` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed
* `bnb<name>` optimizers by name with [BitsAndBytes](https://github.com/TimDettmers/bitsandbytes) installed
* `cadamw`, `clion`, and more 'Cautious' optimizers from https://github.com/kyleliang919/C-Optim - https://arxiv.org/abs/2411.16085
* `adam`, `adamw`, `rmsprop`, `adadelta`, `adagrad`, and `sgd` pass through to `torch.optim` implementations
### Augmentations
* Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py) - https://arxiv.org/abs/1708.04896)
* Mixup - https://arxiv.org/abs/1710.09412
* CutMix - https://arxiv.org/abs/1905.04899
* AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py)
* AugMix w/ JSD loss, JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well - https://arxiv.org/abs/1912.02781
* SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data
### Regularization
* DropPath aka "Stochastic Depth" - https://arxiv.org/abs/1603.09382
* DropBlock - https://arxiv.org/abs/1810.12890
* Blur Pooling - https://arxiv.org/abs/1904.11486
### Other
Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP:
* All models have a common default configuration interface and API for
* accessing/changing the classifier - `get_classifier` and `reset_classifier`
* doing a forward pass on just the features - `forward_features` (see [documentation](https://huggingface.co/docs/timm/feature_extraction))
* these makes it easy to write consistent network wrappers that work with any of the models
* All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://huggingface.co/docs/timm/feature_extraction))
* `create_model(name, features_only=True, out_indices=..., output_stride=...)`
* `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level.
* `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this.
* feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member
* All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired
* High performance [reference training, validation, and inference scripts](https://huggingface.co/docs/timm/training_script) that work in several process/GPU modes:
* NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional)
* PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled)
* PyTorch w/ single GPU single process (AMP optional)
* A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights.
* A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs)
* Learning rate schedulers
* Ideas adopted from
* [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers)
* [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler)
* SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983)
* Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau`
* Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper?
* Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets)
* An extensive selection of channel and/or spatial attention modules:
* Bottleneck Transformer - https://arxiv.org/abs/2101.11605
* CBAM - https://arxiv.org/abs/1807.06521
* Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667
* Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151
* Gather-Excite (GE) - https://arxiv.org/abs/1810.12348
* Global Context (GC) - https://arxiv.org/abs/1904.11492
* Halo - https://arxiv.org/abs/2103.12731
* Involution - https://arxiv.org/abs/2103.06255
* Lambda Layer - https://arxiv.org/abs/2102.08602
* Non-Local (NL) - https://arxiv.org/abs/1711.07971
* Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507
* Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586
* Split (SPLAT) - https://arxiv.org/abs/2004.08955
* Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030
## Results
Model validation results can be found in the [results tables](results/README.md)
## Getting Started (Documentation)
The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome.
[Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail.
[timmdocs](http://timm.fast.ai/) is an alternate set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs.
[paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`.
## Train, Validation, Inference Scripts
The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://huggingface.co/docs/timm/training_script).
## Awesome PyTorch Resources
One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below.
### Object Detection, Instance and Semantic Segmentation
* Detectron2 - https://github.com/facebookresearch/detectron2
* Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch
* EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch
### Computer Vision / Image Augmentation
* Albumentations - https://github.com/albumentations-team/albumentations
* Kornia - https://github.com/kornia/kornia
### Knowledge Distillation
* RepDistiller - https://github.com/HobbitLong/RepDistiller
* torchdistill - https://github.com/yoshitomo-matsubara/torchdistill
### Metric Learning
* PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning
### Training / Frameworks
* fastai - https://github.com/fastai/fastai
## Licenses
### Code
The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue.
### Pretrained Weights
So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product.
#### Pretrained on more than ImageNet
Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions.
## Citing
### BibTeX
```bibtex
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
```
### Latest DOI
[![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526)
", Assign "at most 3 tags" to the expected json: {"id":"3862","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"