AI prompts
base on Run any open-source LLMs, such as Llama, Mistral, as OpenAI compatible API endpoint in the cloud. # 🦾 OpenLLM: Self-Hosting LLMs Made Easy
[![License: Apache-2.0](https://img.shields.io/badge/License-Apache%202-green.svg)](https://github.com/bentoml/OpenLLM/blob/main/LICENSE)
[![Releases](https://img.shields.io/pypi/v/openllm.svg?logo=pypi&label=PyPI&logoColor=gold)](https://pypi.org/project/openllm)
[![CI](https://results.pre-commit.ci/badge/github/bentoml/OpenLLM/main.svg)](https://results.pre-commit.ci/latest/github/bentoml/OpenLLM/main)
[![X](https://badgen.net/badge/icon/@bentomlai/000000?icon=twitter&label=Follow)](https://twitter.com/bentomlai)
[![Community](https://badgen.net/badge/icon/Community/562f5d?icon=slack&label=Join)](https://l.bentoml.com/join-slack)
OpenLLM allows developers to run **any open-source LLMs** (Llama 3.2, Qwen2.5, Phi3 and [more](#supported-models)) or **custom models** as **OpenAI-compatible APIs** with a single command. It features a [built-in chat UI](#chat-ui), state-of-the-art inference backends, and a simplified workflow for creating enterprise-grade cloud deployment with Docker, Kubernetes, and [BentoCloud](#deploy-to-bentocloud).
Understand the [design philosophy of OpenLLM](https://www.bentoml.com/blog/from-ollama-to-openllm-running-llms-in-the-cloud).
## Get Started
Run the following commands to install OpenLLM and explore it interactively.
```bash
pip install openllm # or pip3 install openllm
openllm hello
```
![hello](https://github.com/user-attachments/assets/5af19f23-1b34-4c45-b1e0-a6798b4586d1)
## Supported models
OpenLLM supports a wide range of state-of-the-art open-source LLMs. You can also add a [model repository to run custom models](#set-up-a-custom-repository) with OpenLLM.
| Model | Parameters | Quantization | Required GPU | Start a Server |
| ---------------- | ---------- | ------------ | ------------- | ----------------------------------- |
| Llama 3.2 | 1B | - | 12G | `openllm serve llama3.2:1b` |
| Llama 3.2 | 3B | - | 12G | `openllm serve llama3.2:3b` |
| Llama 3.2 Vision | 11B | - | 80G | `openllm serve llama3.2:11b-vision` |
| Mistral | 7B | - | 24G | `openllm serve mistral:7b` |
| Qwen 2.5 | 1.5B | - | 12G | `openllm serve qwen2.5:1.5b` |
| Gemma 2 | 9B | - | 24G | `openllm serve gemma2:9b` |
| Phi3 | 3.8B | - | 12G | `openllm serve phi3:3.8b` |
...
For the full model list, see the [OpenLLM models repository](https://github.com/bentoml/openllm-models).
## Start an LLM server
To start an LLM server locally, use the `openllm serve` command and specify the model version.
> [!NOTE]
> OpenLLM does not store model weights. A Hugging Face token (HF_TOKEN) is required for gated models.
> 1. Create your Hugging Face token [here](https://huggingface.co/settings/tokens).
> 2. Request access to the gated model, such as [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B).
> 3. Set your token as an environment variable by running:
> ```bash
> export HF_TOKEN=<your token>
> ```
```bash
openllm serve llama3:8b
```
The server will be accessible at [http://localhost:3000](http://localhost:3000/), providing OpenAI-compatible APIs for interaction. You can call the endpoints with different frameworks and tools that support OpenAI-compatible APIs. Typically, you may need to specify the following:
- **The API host address**: By default, the LLM is hosted at [http://localhost:3000](http://localhost:3000/).
- **The model name:** The name can be different depending on the tool you use.
- **The API key**: The API key used for client authentication. This is optional.
Here are some examples:
<details>
<summary>OpenAI Python client</summary>
```python
from openai import OpenAI
client = OpenAI(base_url='http://localhost:3000/v1', api_key='na')
# Use the following func to get the available models
# model_list = client.models.list()
# print(model_list)
chat_completion = client.chat.completions.create(
model="meta-llama/Meta-Llama-3-8B-Instruct",
messages=[
{
"role": "user",
"content": "Explain superconductors like I'm five years old"
}
],
stream=True,
)
for chunk in chat_completion:
print(chunk.choices[0].delta.content or "", end="")
```
</details>
<details>
<summary>LlamaIndex</summary>
```python
from llama_index.llms.openai import OpenAI
llm = OpenAI(api_bese="http://localhost:3000/v1", model="meta-llama/Meta-Llama-3-8B-Instruct", api_key="dummy")
...
```
</details>
## Chat UI
OpenLLM provides a chat UI at the `/chat` endpoint for the launched LLM server at http://localhost:3000/chat.
<img width="800" alt="openllm_ui" src="https://github.com/bentoml/OpenLLM/assets/5886138/8b426b2b-67da-4545-8b09-2dc96ff8a707">
## Chat with a model in the CLI
To start a chat conversation in the CLI, use the `openllm run` command and specify the model version.
```bash
openllm run llama3:8b
```
## Model repository
A model repository in OpenLLM represents a catalog of available LLMs that you can run. OpenLLM provides a default model repository that includes the latest open-source LLMs like Llama 3, Mistral, and Qwen2, hosted at [this GitHub repository](https://github.com/bentoml/openllm-models). To see all available models from the default and any added repository, use:
```bash
openllm model list
```
To ensure your local list of models is synchronized with the latest updates from all connected repositories, run:
```bash
openllm repo update
```
To review a model’s information, run:
```bash
openllm model get llama3:8b
```
### Add a model to the default model repository
You can contribute to the default model repository by adding new models that others can use. This involves creating and submitting a Bento of the LLM. For more information, check out this [example pull request](https://github.com/bentoml/openllm-models/pull/1).
### Set up a custom repository
You can add your own repository to OpenLLM with custom models. To do so, follow the format in the default OpenLLM model repository with a `bentos` directory to store custom LLMs. You need to [build your Bentos with BentoML](https://docs.bentoml.com/en/latest/guides/build-options.html) and submit them to your model repository.
First, prepare your custom models in a `bentos` directory following the guidelines provided by [BentoML to build Bentos](https://docs.bentoml.com/en/latest/guides/build-options.html). Check out the [default model repository](https://github.com/bentoml/openllm-repo) for an example and read the [Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md) for details.
Then, register your custom model repository with OpenLLM:
```bash
openllm repo add <repo-name> <repo-url>
```
**Note**: Currently, OpenLLM only supports adding public repositories.
## Deploy to BentoCloud
OpenLLM supports LLM cloud deployment via BentoML, the unified model serving framework, and BentoCloud, an AI inference platform for enterprise AI teams. BentoCloud provides fully-managed infrastructure optimized for LLM inference with autoscaling, model orchestration, observability, and many more, allowing you to run any AI model in the cloud.
[Sign up for BentoCloud](https://www.bentoml.com/) for free and [log in](https://docs.bentoml.com/en/latest/bentocloud/how-tos/manage-access-token.html). Then, run `openllm deploy` to deploy a model to BentoCloud:
```bash
openllm deploy llama3:8b
```
> [!NOTE]
> If you are deploying a gated model, make sure to set HF_TOKEN in enviroment variables.
Once the deployment is complete, you can run model inference on the BentoCloud console:
<img width="800" alt="bentocloud_ui" src="https://github.com/bentoml/OpenLLM/assets/65327072/4f7819d9-73ea-488a-a66c-f724e5d063e6">
## Community
OpenLLM is actively maintained by the BentoML team. Feel free to reach out and join us in our pursuit to make LLMs more accessible and easy to use 👉 [Join our Slack community!](https://l.bentoml.com/join-slack)
## Contributing
As an open-source project, we welcome contributions of all kinds, such as new features, bug fixes, and documentation. Here are some of the ways to contribute:
- Repost a bug by [creating a GitHub issue](https://github.com/bentoml/OpenLLM/issues/new/choose).
- [Submit a pull request](https://github.com/bentoml/OpenLLM/compare) or help review other developers’ [pull requests](https://github.com/bentoml/OpenLLM/pulls).
- Add an LLM to the OpenLLM default model repository so that other users can run your model. See the [pull request template](https://github.com/bentoml/openllm-models/pull/1).
- Check out the [Developer Guide](https://github.com/bentoml/OpenLLM/blob/main/DEVELOPMENT.md) to learn more.
## Acknowledgements
This project uses the following open-source projects:
- [bentoml/bentoml](https://github.com/bentoml/bentoml) for production level model serving
- [vllm-project/vllm](https://github.com/vllm-project/vllm) for production level LLM backend
- [blrchen/chatgpt-lite](https://github.com/blrchen/chatgpt-lite) for a fancy Web Chat UI
- [chujiezheng/chat_templates](https://github.com/chujiezheng/chat_templates)
- [astral-sh/uv](https://github.com/astral-sh/uv) for blazing fast model requirements installing
We are grateful to the developers and contributors of these projects for their hard work and dedication.
", Assign "at most 3 tags" to the expected json: {"id":"4191","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"