base on deep learning for image processing including classification and object-detection etc. # 深度学习在图像处理中的应用教程 ## 前言 * 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 * 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Tensorflow(内部的keras模块)进行网络的搭建与训练 * 课程中所有PPT都放在`course_ppt`文件夹下,需要的自行下载。 ## 教程目录,点击跳转相应视频(后期会根据学习内容增加) * 图像分类 * LeNet(已完成) * [Pytorch官方demo(Lenet)](https://www.bilibili.com/video/BV187411T7Ye) * [Tensorflow2官方demo](https://www.bilibili.com/video/BV1n7411T7o6) * AlexNet(已完成) * [AlexNet网络讲解](https://www.bilibili.com/video/BV1p7411T7Pc) * [Pytorch搭建AlexNet](https://www.bilibili.com/video/BV1W7411T7qc) * [Tensorflow2搭建Alexnet](https://www.bilibili.com/video/BV1s7411T7vs) * VggNet(已完成) * [VggNet网络讲解](https://www.bilibili.com/video/BV1q7411T7Y6) * [Pytorch搭建VGG网络](https://www.bilibili.com/video/BV1i7411T7ZN) * [Tensorflow2搭建VGG网络](https://www.bilibili.com/video/BV1q7411T76b) * GoogLeNet(已完成) * [GoogLeNet网络讲解](https://www.bilibili.com/video/BV1z7411T7ie) * [Pytorch搭建GoogLeNet网络](https://www.bilibili.com/video/BV1r7411T7M5) * [Tensorflow2搭建GoogLeNet网络](https://www.bilibili.com/video/BV1a7411T7Ht) * ResNet(已完成) * [ResNet网络讲解](https://www.bilibili.com/video/BV1T7411T7wa) * [Pytorch搭建ResNet网络](https://www.bilibili.com/video/BV14E411H7Uw) * [Tensorflow2搭建ResNet网络](https://www.bilibili.com/video/BV1WE41177Ya) * ResNeXt (已完成) * [ResNeXt网络讲解](https://www.bilibili.com/video/BV1Ap4y1p71v/) * [Pytorch搭建ResNeXt网络](https://www.bilibili.com/video/BV1rX4y1N7tE) * MobileNet_V1_V2(已完成) * [MobileNet_V1_V2网络讲解](https://www.bilibili.com/video/BV1yE411p7L7) * [Pytorch搭建MobileNetV2网络](https://www.bilibili.com/video/BV1qE411T7qZ) * [Tensorflow2搭建MobileNetV2网络](https://www.bilibili.com/video/BV1NE411K7tX) * MobileNet_V3(已完成) * [MobileNet_V3网络讲解](https://www.bilibili.com/video/BV1GK4y1p7uE) * [Pytorch搭建MobileNetV3网络](https://www.bilibili.com/video/BV1zT4y1P7pd) * [Tensorflow2搭建MobileNetV3网络](https://www.bilibili.com/video/BV1KA411g7wX) * ShuffleNet_V1_V2 (已完成) * [ShuffleNet_V1_V2网络讲解](https://www.bilibili.com/video/BV15y4y1Y7SY) * [使用Pytorch搭建ShuffleNetV2](https://www.bilibili.com/video/BV1dh411r76X) * [使用Tensorflow2搭建ShuffleNetV2](https://www.bilibili.com/video/BV1kr4y1N7bh) * EfficientNet_V1(已完成) * [EfficientNet网络讲解](https://www.bilibili.com/video/BV1XK4y1U7PX) * [使用Pytorch搭建EfficientNet](https://www.bilibili.com/video/BV19z4y1179h/) * [使用Tensorflow2搭建EfficientNet](https://www.bilibili.com/video/BV1PK4y1S7Jf) * EfficientNet_V2 (已完成) * [EfficientNetV2网络讲解](https://www.bilibili.com/video/BV19v41157AU) * [使用Pytorch搭建EfficientNetV2](https://www.bilibili.com/video/BV1Xy4y1g74u) * [使用Tensorflow搭建EfficientNetV2](https://www.bilibili.com/video/BV19K4y1g7m4) * RepVGG(已完成) * [RepVGG网络讲解](https://www.bilibili.com/video/BV15f4y1o7QR) * Vision Transformer(已完成) * [Multi-Head Attention讲解](https://www.bilibili.com/video/BV15v411W78M) * [Vision Transformer网络讲解](https://www.bilibili.com/video/BV1Jh411Y7WQ) * [使用Pytorch搭建Vision Transformer](https://www.bilibili.com/video/BV1AL411W7dT) * [使用tensorflow2搭建Vision Transformer](https://www.bilibili.com/video/BV1q64y1X7GY) * Swin Transformer(已完成) * [Swin Transformer网络讲解](https://www.bilibili.com/video/BV1pL4y1v7jC) * [使用Pytorch搭建Swin Transformer](https://www.bilibili.com/video/BV1yg411K7Yc) * [使用Tensorflow2搭建Swin Transformer](https://www.bilibili.com/video/BV1bR4y1t7qT) * ConvNeXt(已完成) * [ConvNeXt网络讲解](https://www.bilibili.com/video/BV1SS4y157fu) * [使用Pytorch搭建ConvNeXt](https://www.bilibili.com/video/BV14S4y1L791) * [使用Tensorflow2搭建ConvNeXt](https://www.bilibili.com/video/BV1TS4y1V7Gz) * MobileViT(已完成) * [MobileViT网络讲解](https://www.bilibili.com/video/BV1TG41137sb) * [使用Pytorch搭建MobileViT](https://www.bilibili.com/video/BV1ae411L7Ki) * 目标检测 * Faster-RCNN/FPN(已完成) * [Faster-RCNN网络讲解](https://www.bilibili.com/video/BV1af4y1m7iL) * [FPN网络讲解](https://www.bilibili.com/video/BV1dh411U7D9) * [Faster-RCNN源码解析(Pytorch)](https://www.bilibili.com/video/BV1of4y1m7nj) * SSD/RetinaNet (已完成) * [SSD网络讲解](https://www.bilibili.com/video/BV1fT4y1L7Gi) * [RetinaNet网络讲解](https://www.bilibili.com/video/BV1Q54y1L7sM) * [SSD源码解析(Pytorch)](https://www.bilibili.com/video/BV1vK411H771) * YOLO Series (已完成) * [YOLO系列网络讲解(V1~V3)](https://www.bilibili.com/video/BV1yi4y1g7ro) * [YOLOv3 SPP源码解析(Pytorch版)](https://www.bilibili.com/video/BV1t54y1C7ra) * [YOLOV4网络讲解](https://www.bilibili.com/video/BV1NF41147So) * [YOLOV5网络讲解](https://www.bilibili.com/video/BV1T3411p7zR) * [YOLOX 网络讲解](https://www.bilibili.com/video/BV1JW4y1k76c) * FCOS(已完成) * [FCOS网络讲解](https://www.bilibili.com/video/BV1G5411X7jw) * 语义分割 * FCN (已完成) * [FCN网络讲解](https://www.bilibili.com/video/BV1J3411C7zd) * [FCN源码解析(Pytorch版)](https://www.bilibili.com/video/BV19q4y1971Q) * DeepLabV3 (已完成) * [DeepLabV1网络讲解](https://www.bilibili.com/video/BV1SU4y1N7Ao) * [DeepLabV2网络讲解](https://www.bilibili.com/video/BV1gP4y1G7TC) * [DeepLabV3网络讲解](https://www.bilibili.com/video/BV1Jb4y1q7j7) * [DeepLabV3源码解析(Pytorch版)](https://www.bilibili.com/video/BV1TD4y1c7Wx) * LR-ASPP (已完成) * [LR-ASPP网络讲解](https://www.bilibili.com/video/BV1LS4y1M76E) * [LR-ASPP源码解析(Pytorch版)](https://www.bilibili.com/video/bv13D4y1F7ML) * U-Net (已完成) * [U-Net网络讲解](https://www.bilibili.com/video/BV1Vq4y127fB/) * [U-Net源码解析(Pytorch版)](https://www.bilibili.com/video/BV1Vq4y127fB) * U2Net (已完成) * [U2Net网络讲解](https://www.bilibili.com/video/BV1yB4y1z7mj) * [U2Net源码解析(Pytorch版)](https://www.bilibili.com/video/BV1Kt4y137iS) * 实例分割 * Mask R-CNN(已完成) * [Mask R-CNN网络讲解](https://www.bilibili.com/video/BV1ZY411774T) * [Mask R-CNN源码解析(Pytorch版)](https://www.bilibili.com/video/BV1hY411E7wD) * 关键点检测 * DeepPose(已完成) * [DeepPose网络讲解](https://www.bilibili.com/video/BV1bm421g7aJ) * [DeepPose源码解析(Pytorch版)](https://www.bilibili.com/video/BV1bm421g7aJ) * HRNet(已完成) * [HRNet网络讲解](https://www.bilibili.com/video/BV1bB4y1y7qP) * [HRNet源码解析(Pytorch版)](https://www.bilibili.com/video/BV1ar4y157JM) **[更多相关视频请进入我的bilibili频道查看](https://space.bilibili.com/18161609/channel/index)** --- 欢迎大家关注下我的微信公众号(**阿喆学习小记**),平时会总结些相关学习博文。 如果有什么问题,也可以到我的CSDN中一起讨论。 [https://blog.csdn.net/qq_37541097/article/details/103482003](https://blog.csdn.net/qq_37541097/article/details/103482003) 我的bilibili频道: [https://space.bilibili.com/18161609/channel/index](https://space.bilibili.com/18161609/channel/index) ", Assign "at most 3 tags" to the expected json: {"id":"6075","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"