AI prompts
base on The code releasing for https://image-dream.github.io/ # ImageDream Reconstruction
Peng Wang, Yichun Shi
[Project Page](https://image-dream.github.io/) | [Paper](https://arxiv.org/abs/2312.02201) | [Demo]()
[imagedream-threestudio-teaser](https://github.com/bytedance/ImageDream/assets/146033206/bcf67b1a-38f9-42cf-81df-b8b2f4fa007f)
## Installation
This part is the same as original [MVDream-threestudio](https://github.com/bytedance/MVDream-threestudio). Skip it if you already have installed the environment.
## Quickstart
Clone the modelcard on the [Huggingface ImageDream Model Page](https://huggingface.co/Peng-Wang/ImageDream/) under ```./extern/ImageDream/release_models/```
In the paper, we use the configuration with soft-shading. It would need an A100 GPU in most cases to compute normal:
```sh
export PYTHONPATH=$PYTHONPATH:./extern/ImageDream
image_file="./extern/ImageDream/assets/astronaut.png"
ckpt_file="./extern/ImageDream/release_models/ImageDream/sd-v2.1-base-4view-ipmv.pt"
cfg_file="./extern/ImageDream/imagedream/configs/sd_v2_base_ipmv.yaml"
python3 launch.py \
--config configs/$method.yaml --train --gpu 0 \
name="imagedream-sd21-shading" tag="astronaut" \
system.prompt_processor.prompt="an astronaut riding a horse" \
system.prompt_processor.image_path="${image_file}" \
system.guidance.ckpt_path="${ckpt_file}" \
system.guidance.config_path="${cfg_file}"
```
***For diffusion only model, refer to subdir*** ```./extern/ImageDream/```
***Check*** ```./threestudio/scripts/run_imagedream.sh``` ***for a bash example.***
## Credits
- This code is forked from [threestudio](https://github.com/threestudio-project/threestudio) and [MVDream](https://github.com/bytedance/MVDream-threestudi) for SDS and 3D Generation.
## Tips
1. Place the object in the center and do not make it too large/small in the image.
2. If you have an object cutting image edge, in config, tuning the parameters range of elevation and fov to be a larger range, e.g. ```[0, 30]```, otherwise, you may do image outpainting and follow tips 1.
3. Check the results with ImageDream diffusion model before using it in 3D rendering to save time.
## PreComputed Results
- Since there is some randomness in diffusion model and time costly to get baseline results. We put our pre-computed results for reproducing Tab.1 in the paper in a [hugging face dataset card](https://huggingface.co/datasets/Peng-Wang/ImageDream)
## Citing
If you find ImageDream helpful, please consider citing:
``` bibtex
@article{wang2023imagedream,
title={ImageDream: Image-Prompt Multi-view Diffusion for 3D Generation},
author={Wang, Peng and Shi, Yichun},
journal={arXiv preprint arXiv:2312.02201},
year={2023}
}
```
", Assign "at most 3 tags" to the expected json: {"id":"6155","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"