AI prompts
base on stock股票.获取股票数据,计算股票指标,识别股票形态,综合选股,选股策略,股票验证回测,股票自动交易,支持PC及移动设备。 **InStock股票系统**
InStock股票系统,抓取每日股票、ETF关键数据,计算股票各种指标,识别K线各种形态,综合选股,内置多种选股策略,支持选股验证回测,支持自动交易,支持批量时间,运行高效,支持PC、平板、手机移动设备显示,同时提供Docker镜像方便安装,是量化投资的好帮手。
本项目地址:https://github.com/myhhub/stock
Docker镜像:https://hub.docker.com/r/mayanghua/instock **镜像优化构建仅170M**。
# 功能介绍
## 一:综合选股
综合选股支持股票范围、基本面、技术面、消息面、人气指标、行情数据等方面共200多个信息栏目进行自由组合选股。选股条件分为以下大类:
```
1.股票范围
市场、 行业、地区、 概念、 风格、指数成份、 上市时间。
2.基本面
估值指标、每股指标、盈利能力、成长能力、资本结构与偿债能力、股本股东。
3.技术面
MACD金叉、KDJ金叉、放量突破、低位资金净流入、高位资金净流出、向上突破均线、均线多头排列、均线空头排列、连涨放量、下跌无量、一根大阳线、两根大阳线、旭日东升、强势多方、炮拨云见日、七仙女下凡(七连阴)、八仙过海(八连阳)、九阳神功(九连阳)、四串阳、天量法则、放量上攻、穿头破脚、倒转锤头、射击之星、黄昏之星、曙光初现、身怀六甲、乌云盖顶、早晨之星、窄幅整理。
4.消息面
公告大事、机构关注情况、机构持股家数、机构持股比例。
5.人气指标
股吧人气排名、人气排名变化、人气排名连涨、人气排名连跌、人气排名创新高、人气排名创新低、新晋粉丝占比、铁杆粉丝占比、7日关注排名、今日浏览排名。
6.行情数据
股价表现、成交情况、资金流向、行情统计、沪深股通。
```
![](img/a3.jpg)
![](img/a2.jpg)
![](img/a1.jpg)
## 二:股票每日数据
包括每日股票数据、股票资金流向、股票分红配送、股票龙虎榜、股票大宗交易、股票基本面数据、行业资金流向、概念资金流向、每日ETF数据。
抓取A股票每日数据,主要为一些关键数据,同时封装抓取方法,方便扩展系统获取个人关注的数据。
![](img/00.jpg)
![](img/12.jpg)
## 三:股票指标计算
基于talib、pandas 计算指标,计算高效准确。调整个别指标公式,确保结果和同花顺、通信达结果一致。
指标:
```
1、MACD 2、KDJ 3、BOLL 4、TRIX,TRMA 5、CR 6、SMA 7、RSI
8、VR,MAVR 9、ROC 10、DMI,+DI,-DI,DX,ADX,ADXR 11、W&R
12、CCI 13、TR、ATR 14、DMA、AMA 15、OBV 16、SAR 17、PSY
18、BRAR 19、EMV 20、BIAS 21、TEMA 22、MFI 23、VWMA
24、PPO 25、WT 26、Supertrend 27、DPO 28、VHF 29、RVI
30、FI 31、ENE 32、STOCHRSI
```
![](img/01.jpg)
![](img/06.jpg)
![](img/13.jpg)
![](img/10.jpg)
![](img/02.jpg)
## 四:判断买入卖出的股票
根据指标判定可能买入卖出的股票,具体筛选条件如下:
```
KDJ:
1、超买区:K值在80以上,D值在70以上,J值大于90时为超买。一般情况下,股价有可能下跌。投资者应谨慎行事,局外人不应再追涨,局内人应适时卖出。
2、超卖区:K值在20以下,D值在30以下为超卖区。一般情况下,股价有可能上涨,反弹的可能性增大。局内人不应轻易抛出股票,局外人可寻机入场。
RSI:
1、当六日指标上升到达80时,表示股市已有超买现象,如果一旦继续上升,超过90以上时,则表示已到严重超买的警戒区,股价已形成头部,极可能在短期内反转回转。
2、当六日强弱指标下降至20时,表示股市有超卖现象,如果一旦继续下降至10以下时则表示已到严重超卖区域,股价极可能有止跌回升的机会。
CCI:
1、当CCI>﹢100时,表明股价已经进入非常态区间——超买区间,股价的异动现象应多加关注。
2、当CCI<﹣100时,表明股价已经进入另一个非常态区间——超卖区间,投资者可以逢低吸纳股票。
CR:
1、跌穿a、b、c、d四条线,再由低点向上爬升160时,为短线获利的一个良机,应适当卖出股票。
2、CR跌至40以下时,是建仓良机。
WR:
1、当%R线达到20时,市场处于超买状况,走势可能即将见顶。
2、当%R线达到80时,市场处于超卖状况,股价走势随时可能见底。
VR:
1、获利区域160-450根据情况获利了结。
2、低价区域40-70可以买进。
```
![](img/05.jpg)
## 五:K线形态识别
精准识别61种K线形态,支持用户自选形态识别。
识别形态:
```
1、两只乌鸦2、三只乌鸦3、三内部上涨和下跌4、三线打击5、三外部上涨和下跌6、南方三星7、三个白兵8、弃婴
9、大敌当前10、捉腰带线11、脱离12、收盘缺影线13、藏婴吞没14、反击线15、乌云压顶16、十字17、十字星
18、蜻蜓十字/T形十字19、吞噬模式20、十字暮星 21、暮星22、向上/下跳空并列阳线23、墓碑十字/倒T十字
24、锤头25、上吊线26、母子线27、十字孕线28、风高浪大线29、陷阱30、修正陷阱31、家鸽32、三胞胎乌鸦
33、颈内线34、倒锤头35、反冲形态36、由较长缺影线决定的反冲形态37、梯底38、长脚十字39、长蜡烛
40、光头光脚/缺影线 41、相同低价42、铺垫43、十字晨星44、晨星45、颈上线46、刺透形态47、黄包车夫
48、上升/下降三法49、分离线50、射击之星51、短蜡烛52、纺锤53、停顿形态54、条形三明治55、探水竿
56、跳空并列阴阳线57、插入58、三星59、奇特三河床60、向上跳空的两只乌鸦61、上升/下降跳空三法
```
形态识别结果:
```
负:出现卖出信号
0:没有出现该形态
正:出现买入信号
```
![](img/09.jpg)
![](img/06.jpg)
## 六:策略选股
内置放量上涨、停机坪、回踩年线、突破平台、放量跌停等多种选股策略,同时封装了策略模板,方便扩展实现自己的策略。
```
1、放量上涨
1)当日比前一天上涨小于2%或收盘价小于开盘价。
2)当日成交额不低于2亿。
3)当日成交量/5日平均成交量>=2。
2、均线多头
MA30向上
1)30日前的30日均线<20日前的30日均线<10日前的30日均线<当日的30日均线。
2)(当日的30日均线/30日前的30日均线)>1.2。
3、停机坪
1)最近15日有涨幅大于9.5%,且必须是放量上涨。
2)紧接的下个交易日必须高开,收盘价必须上涨,且与开盘价不能大于等于相差3%。
3)接下2、3个交易日必须高开,收盘价必须上涨,且与开盘价不能大于等于相差3%,且每天涨跌幅在5%间。
4、回踩年线
1)分2个时间段:前段=最近60交易日最高收盘价之前交易日(长度>0),后段=最高价当日及后面的交易日。
2)前段由年线(250日)以下向上突破。
3)后段必须在年线以上运行,且后段最低价日与最高价日相差必须在10-50日间。
4)回踩伴随缩量:最高价日交易量/后段最低价日交易量>2,后段最低价/最高价<0.8。
5、突破平台
1)60日内某日收盘价>=60日均线>开盘价。
2)且【1】放量上涨。
3)且【1】间之前时间,任意一天收盘价与60日均线偏离在-5%~20%之间。
6、无大幅回撤
1)当日收盘价比60日前的收盘价的涨幅小于0.6。
2)最近60日,不能有单日跌幅超7%、高开低走7%、两日累计跌幅10%、两日高开低走累计10%。
7、海龟交易法则
最后一个交易日收市价为指定区间内最高价。
1)当日收盘价>=最近60日最高收盘价。
8、高而窄的旗形
1)必须至少上市交易60日。
2)当日收盘价/之前24~10日的最低价>=1.9。
3)之前24~10日必须连续两天涨幅大于等于9.5%。
9、放量跌停。
1)跌>9.5%。
2)成交额不低于2亿。
3)成交量至少是5日平均成交量的4倍。
10、低ATR成长
1)必须至少上市交易250日。
2)最近10个交易日的最高收盘价必须比最近10个交易日的最低收盘价高1.1倍。
11、股票基本面选股
1)市盈率小于等于20,且大于0。
2)市净率小于等于10。
3)净资产收益率大于等于15。
```
![](img/04.jpg)
## 七:选股验证
对指标、策略等选出的股票进行回测,验证策略的成功率,是否可用。
![](img/05.jpg)
## 八:自动交易
支持自动交易,内置自动打新股的策略及示例策略,由于**涉及金钱**,规避可能存在风险,没有提供其他交易策略。
具有交易日志,以及支持为每个交易策略配置交易日志。
**特别提醒**:交易日10:00点会触发打新,不想打新的删除stagging.py或不要启动“交易服务”。
![](img/11.jpg)
## 九:关注功能
支持股票关注,关注股票在各个模块(含有的)置顶、标红显示。
## 十:支持批量
可以通过时间段、枚举时间、当前时间进行指标计算、策略选股及回测等。同时支持智能识别交易日,可以输入任意日期。
具体执行设置如下:
```
------整体作业,支持批量作业------
当前时间作业 python execute_daily_job.py
单个时间作业 python execute_daily_job.py 2022-03-01
枚举时间作业 python execute_daily_job.py 2022-01-01,2021-02-08,2022-03-12
区间时间作业 python execute_daily_job.py 2022-01-01 2022-03-01
------单功能作业,支持批量作业,回测数据自动填补到当前
基础数据实时作业 python basic_data_daily_job.py
基础数据非实时作业 python basic_data_other_daily_job.py
指标数据作业 python indicators_data_daily_job.py
K线形态作业 klinepattern_data_daily_job.py
策略数据作业 python strategy_data_daily_job.py
回测数据 python backtest_data_daily_job.py
```
## 十一:存储采用数据库设计
数据存储采用数据库设计,能保存历史数据,以及对数据进行扩展分析、统计、挖掘。系统实现自动创建数据库、数据表,封装了批量更新、插入数据,方便业务扩展。
![](img/07.jpg)
## 十二:展示采用web设计
采用web设计,可视化展示结果。对展示进行封装,添加新的业务表单,只需要配置视图字典就可自动出现业务可视化界面,方便业务功能扩展。
## 十三:运行高效
采用多线程、单例共享资源有效提高运算效率。1天数据的抓取、计算指标、形态识别、策略选股、回测等全部任务运行时间大概4分钟(普通笔记本),计算天数越多效率越高。
## 十四:方便调试
系统运行的重要日志记录在stock_execute_job.log(数据抓取、处理、分析)、stock_web.log(web服务)、stock_trade.log(交易服务),方便调试发现问题。
![](img/08.jpg)
# 安装说明
本系统支持Windows、Linux、MacOS,同时本系统创建了Docker镜像,按自己需要选择安装方式。
下面按分常规安装方式、docker镜像安装方式进行一一说明。
## 一:常规安装方式
建议windows下安装,方便操作及使用系统,同时安装也非常简单。
以下安装及运行以windows为例进行介绍。
### 1.安装python
项目开发使用python 3.11,建议最新版。
```
(1)在官网 https://www.python.org/downloads/ 下载安装包,一键安装即可,安装切记勾选自动设置环境变量。
(2)配置永久全局国内镜像库(因为有墙,无法正常安装库文件),执行如下dos命令:
python pip config --global set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 如果你只想为当前用户设置,你也可以去掉下面的"--global"选项
```
### 2.安装mysql
建议最新版。
```
在官网 https://dev.mysql.com/downloads/mysql/ 下载安装包,一键安装即可。
```
### 3.安装依赖库
依赖库都是目前最新版本。
a.安装依赖库:
```
#dos切换到本系统的根目录,执行下面命令:
python pip install -r requirements.txt
```
b.若想升级项目依赖库至最新版,可以通过下面方法:
先打开requirements.txt,然后修改文件中的“==”为“>=”,接着执行下面命令:
```
python pip install -r requirements.txt --upgrade
```
c.若扩展了本项目,可以通过下面方法生成项目依赖:
```
#使用pipreqs生成项目相关依赖的requirements.txt
python pip install pipreqs
# 安装pipreqs,若有安装可跳过
python pipreqs --encoding utf-8 --force ./
# 本项目是utf-8编码
```
### 4.安装 talib
```
第一种方法. pip 下安装
(1)https://www.ta-lib.org/下载并解压ta-lib-0.4.0-msvc.zip
(2)解压并将ta_lib放在C盘根目录
(3)https://visualstudio.microsoft.com/zh-hans/downloads/下载并安装Visual Studio Community,安装切记勾选Visual C++功能
(4)Build TA-Lib Library # 构建 TA-Lib 库
①在开始菜单中搜索并打开[Native Tools Command Prompt](根据操作系统选择32位或64位)
②输入 cd C:\ta-lib\c\make\cdr\win32\msvc
③构建库,输入 nmake
(5)安装完成。
第二种方法. Anaconda 下安装
(1)打开Anaconda Prompt终端。
(2)在终端输入命令行conda install -c conda-forge ta-lib 。
(3)此处确认是否继续安装?输入y 继续安装,直到完成
(4)安装完成。
```
### 5.安装 Navicat(可选)
Navicat可以方便管理数据库,以及可以手工对数据进行查看、处理、分析、挖掘。
Navicat是一套可创建多个连接的数据库管理工具,用以方便管理 MySQL、Oracle、PostgreSQL、SQLite、SQL Server、MariaDB 和 MongoDB 等不同类型的数据库
```
(1)在官网 https://www.navicat.com.cn/download/navicat-premium 下载安装包,一键安装即可。
(2)然后下载破解补丁: https://pan.baidu.com/s/18XpTHrm9OiLEl3u6z_uxnw 提取码: 8888 ,破解即可。
```
### 6.配置数据库
一般可能会修改的信息是”数据库访问密码“。
修改database.py相关信息:
```
db_host = "localhost" # 数据库服务主机
db_user = "root" # 数据库访问用户
db_password = "root" # 数据库访问密码
db_port = 3306 # 数据库服务端口
db_charset = "utf8mb4" # 数据库字符集
```
### 7.安装自动交易(可选)
```
1.安装交易软件
1.1 通用同花顺客户端券商的客户
通用同花顺客户端:
https://activity.ths123.com/acmake/cache/1361.html
1.2 专用同花顺客户端券商的客户
自行去券商官网找同花顺专用版
例如:广发的下载核新独立委托端(同花顺版):
http://www.gf.com.cn/softdownload/index?tab=1
2.安装tesseract(自动识别验证码)
第一种方法.下载编译好的
在下面链接页,根据操作系统选择相应版本
https://digi.bib.uni-mannheim.de/tesseract/
第二种方法.用源码编译
下载源码:https://github.com/tesseract-ocr/tesseract
注意:
安装完要将安装路径设置到PATH环境变量里。
下面提供dos命令设置,以管理员身份运行cmd,输入:
setx /m PATH "%PATH%;C:\Program Files\Tesseract-OCR"
3.设置交易配置
3.1.修改trade_client.json
"user": "888888888888", #交易账号
"password": "888888", #交易密码
"exe_path": "C:/gfzqrzrq/xiadan.exe" #交易软件路径
3.2.修改trade_service.py
broker = 'gf_client' #这是广发
详情参阅usage.md,配置对应券商
```
### 8.运行说明
#### 8.1.执行数据抓取、处理、分析、识别
支持批量作业,具体参见run_job.bat中的注释说明。
建议将其加入到任务计划中,工作日的每天17:00执行。
**数据抓取、处理原则:**
1).开盘即有且无历史数据的:综合选股、每日股票数据、股票资金流向、股票分红配送、龙虎榜、每日ETF数据;
2).收盘即有且有历史数据的:股票指标数据、股票K线形态、股票策略数据;
3).收盘后1~2小时才有且有历史数据的:大宗交易。
运行run_job.bat,会依据上面原则获取各模块当前或前个交易日的数据。
```
运行 run_job.bat
```
若想看开盘后的当前实时数据,可以运行下面,很快大概1秒:
```
#基础数据作业
python basic_data_daily_job.py
```
#### 8.2.启动web服务
```
运行 run_web.bat
```
启动服务后,打开浏览器,输入:http://localhost:9988/ ,即可使用本系统的可视化功能。
#### 8.3.启动交易服务
```
运行 run_trade.bat
```
## 二:docker镜像安装方式
没有docker环境,可以参考:[VirtualBox虚拟机安装Ubuntu](https://www.ljjyy.com/archives/2019/10/100590.html),里面也介绍了python、docker等常用软件的安装,若想在Windows下安装docker自行百度。
### 1.安装数据库镜像
如果已经有Mysql、mariadb数据库可以跳过本步。
运行下面命令:
**特别提醒:执行命令的用户要有root权限,其他命令也如此。例如:ubuntu系统在命令前加上sudo** ,sudo docker......
```
docker run -d --name InStockDbService \
-v /data/mariadb/data:/var/lib/instockdb \
-e MYSQL_ROOT_PASSWORD=root \
library/mariadb:latest
```
### 2.安装本系统镜像
a.若按上面【1.安装数据库镜像】装的数据库,运行下面命令:
```
docker run -dit --name InStock --link=InStockDbService \
-p 9988:9988 \
-e db_host=InStockDbService \
mayanghua/instock:latest
```
b.已经有Mysql、mariadb数据库,运行下面命令:
```
docker run -dit --name InStock \
-p 9988:9988 \
-e db_host=localhost \
-e db_user=root \
-e db_password=root \
-e db_database=instockdb \
-e db_port=3306 \
mayanghua/instock:latest
```
docker -e 参数说明:
```
db_host # 数据库服务主机
db_user # 数据库访问用户
db_password # 数据库访问密码
db_database # 数据库名称
db_port # 数据库服务端口
```
按自己数据库实际情况配置参数。
### 3. 系统运行
启动容器后,会自动运行,首先会初始化数据、启动web服务。然后每小时执行“基础数据抓取”,每天17:30执行所有的数据抓取、处理、分析、识别、回测。
打开浏览器,输入:http://localhost:9988/ ,即可使用本系统的可视化功能。
### 4.历史数据
历史数据抓取、处理、分析、识别、回测,运行下面命令:
```
docker exec -it InStock bash
cat InStock/instock/bin/run_job.sh
#查看run_job.sh注释,自己选择作业
------整体作业,支持批量作业------
当前时间作业 python execute_daily_job.py
单个时间作业 python execute_daily_job.py 2022-03-01
枚举时间作业 python execute_daily_job.py 2022-01-01,2021-02-08,2022-03-12
区间时间作业 python execute_daily_job.py 2022-01-01 2022-03-01
------单功能作业,支持批量作业,回测数据自动填补到当前
综合选股作业 python selection_data_daily_job.py
基础数据实时作业 python basic_data_daily_job.py
基础数据收盘2小时后作业 python backtest_data_daily_job.py
基础数据非实时作业 python basic_data_other_daily_job.py
指标数据作业 python indicators_data_daily_job.py
K线形态作业 klinepattern_data_daily_job.py
策略数据作业 python strategy_data_daily_job.py
回测数据 python backtest_data_daily_job.py
第一种方法:
python execute_daily_job.py 2023-03-01,2023-03-02
第二种方法:
修改run_job.sh,然后运行 bash InStock/instock/bin/run_job.sh
```
### 5.查看日志
运行下面命令:
```
docker exec -it InStock bash
cat InStock/instock/log/stock_execute_job.log
cat InStock/instock/log/stock_web.log
```
### 6.docker常用命令
```
docker container stop InStock InStockDbService
#停止容器
docker container prune
#回收容器
docker rmi mayanghua/instock:latest library/mariadb:latest
#删除镜像
```
具体参见:[Docker基础之 二.镜像及容器的基本操作](https://www.ljjyy.com/archives/2018/06/100208.html)
### 7.自动交易
目前只支持windows。参考常规安装方式,只需安装python、依赖库,**不需安装mysql、talib等**。
# 特别声明
股市有风险投资需谨慎,本系统只能用于学习、股票分析,投资盈亏概不负责。
本系统中的表格为第三方商业控件,仅使用了评估版进行学习及测试。
", Assign "at most 3 tags" to the expected json: {"id":"6434","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"