AI prompts
base on [ICCV 2023] DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders # šØ DDColor
[](https://arxiv.org/abs/2212.11613)
[](https://huggingface.co/piddnad/DDColor-models)
[](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary)
[](https://replicate.com/piddnad/ddcolor)

Official PyTorch implementation of ICCV 2023 Paper "DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders".
> Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, Xuansong Xie
> *DAMO Academy, Alibaba Group*
šŖ DDColor can provide vivid and natural colorization for historical black and white old photos.
<p align="center">
<img src="assets/teaser.png" width="100%">
</p>
š² It can even colorize/recolor landscapes from anime games, transforming your animated scenery into a realistic real-life style! (Image source: Genshin Impact)
<p align="center">
<img src="assets/anime_landscapes.png" width="100%">
</p>
## News
- [2024-01-28] Support inference via š¤ Hugging Face! Thanks @[Niels](https://github.com/NielsRogge) for the suggestion and example code and @[Skwara](https://github.com/Skwarson96) for fixing bug.
- [2024-01-18] Add Replicate demo and API! Thanks @[Chenxi](https://github.com/chenxwh).
- [2023-12-13] Release the DDColor-tiny pre-trained model!
- [2023-09-07] Add the Model Zoo and release three pretrained models!
- [2023-05-15] Code release for training and inference!
- [2023-05-05] The online demo is available!
## Online Demo
Try our online demos at [ModelScope](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) and [Replicate](https://replicate.com/piddnad/ddcolor).
## Methods
*In short:* DDColor uses multi-scale visual features to optimize **learnable color tokens** (i.e. color queries) and achieves state-of-the-art performance on automatic image colorization.
<p align="center">
<img src="assets/network_arch.jpg" width="100%">
</p>
## Installation
### Requirements
- Python >= 3.7
- PyTorch >= 1.7
### Installation with conda (recommended)
```sh
conda create -n ddcolor python=3.9
conda activate ddcolor
pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements.txt
# Install basicsr, only required for training
python3 setup.py develop
```
## Quick Start
### Inference Using Local Script (No `basicsr` Required)
1. Download the pretrained model:
```python
from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s' % model_dir)
```
2. Run inference with
```sh
python infer.py --model_path ./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt --input ./assets/test_images
```
or
```sh
sh scripts/inference.sh
```
### Inference Using Hugging Face
Load the model via Hugging Face Hub:
```python
from infer_hf import DDColorHF
ddcolor_paper_tiny = DDColorHF.from_pretrained("piddnad/ddcolor_paper_tiny")
ddcolor_paper = DDColorHF.from_pretrained("piddnad/ddcolor_paper")
ddcolor_modelscope = DDColorHF.from_pretrained("piddnad/ddcolor_modelscope")
ddcolor_artistic = DDColorHF.from_pretrained("piddnad/ddcolor_artistic")
```
Check `infer_hf.py` for the details of the inference, or directly perform model inference by running:
```sh
python infer_hf.py --model_name ddcolor_modelscope --input ./assets/test_images
# model_name: [ddcolor_paper | ddcolor_modelscope | ddcolor_artistic | ddcolor_paper_tiny]
```
### Inference Using ModelScope
1. Install modelscope:
```sh
pip install modelscope
```
2. Run inference:
```python
import cv2
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
img_colorization = pipeline(Tasks.image_colorization, model='damo/cv_ddcolor_image-colorization')
result = img_colorization('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg')
cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG])
```
This code will automatically download the `ddcolor_modelscope` model (see [ModelZoo](#model-zoo)) and performs inference. The model file `pytorch_model.pt` can be found in the local path `~/.cache/modelscope/hub/damo`.
### Gradio Demo
Install the gradio and other required libraries:
```sh
pip install gradio gradio_imageslider timm
```
Then, you can run the demo with the following command:
```sh
python gradio_app.py
```
## Model Zoo
We provide several different versions of pretrained models, please check out [Model Zoo](MODEL_ZOO.md).
## Train
1. Dataset Preparation: Download the [ImageNet](https://www.image-net.org/) dataset or create a custom dataset. Use this script to obtain the dataset list file:
```sh
python data_list/get_meta_file.py
```
2. Download the pretrained weights for [ConvNeXt](https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth) and [InceptionV3](https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth) and place them in the `pretrain` folder.
3. Specify 'meta_info_file' and other options in `options/train/train_ddcolor.yml`.
4. Start training:
```sh
sh scripts/train.sh
```
## ONNX export
Support for ONNX model exports is available.
1. Install dependencies:
```sh
pip install onnx==1.16.1 onnxruntime==1.19.2 onnxsim==0.4.36
```
2. Usage example:
```sh
python export.py
usage: export.py [-h] [--input_size INPUT_SIZE] [--batch_size BATCH_SIZE] --model_path MODEL_PATH [--model_size MODEL_SIZE]
[--decoder_type DECODER_TYPE] [--export_path EXPORT_PATH] [--opset OPSET]
```
Demo of ONNX export using a `ddcolor_paper_tiny` model is available [here](notebooks/colorization_pipeline_onnxruntime.ipynb).
## Citation
If our work is helpful for your research, please consider citing:
```
@inproceedings{kang2023ddcolor,
title={DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders},
author={Kang, Xiaoyang and Yang, Tao and Ouyang, Wenqi and Ren, Peiran and Li, Lingzhi and Xie, Xuansong},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={328--338},
year={2023}
}
```
## Acknowledgments
We thank the authors of BasicSR for the awesome training pipeline.
> Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020.
Some codes are adapted from [ColorFormer](https://github.com/jixiaozhong/ColorFormer), [BigColor](https://github.com/KIMGEONUNG/BigColor), [ConvNeXt](https://github.com/facebookresearch/ConvNeXt), [Mask2Former](https://github.com/facebookresearch/Mask2Former), and [DETR](https://github.com/facebookresearch/detr). Thanks for their excellent work!
", Assign "at most 3 tags" to the expected json: {"id":"6995","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"