base on [ICCV 2023] DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders # šŸŽØ DDColor [![arXiv](https://img.shields.io/badge/arXiv-2212.11613-b31b1b.svg)](https://arxiv.org/abs/2212.11613) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-FF8000)](https://huggingface.co/piddnad/DDColor-models) [![ModelScope demo](https://img.shields.io/badge/%F0%9F%91%BE%20ModelScope-Demo-8A2BE2)](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) [![Replicate](https://replicate.com/piddnad/ddcolor/badge)](https://replicate.com/piddnad/ddcolor) ![visitors](https://visitor-badge.laobi.icu/badge?page_id=piddnad/DDColor) Official PyTorch implementation of ICCV 2023 Paper "DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders". > Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren, Lingzhi Li, Xuansong Xie > *DAMO Academy, Alibaba Group* šŸŖ„ DDColor can provide vivid and natural colorization for historical black and white old photos. <p align="center"> <img src="assets/teaser.webp" width="100%"> </p> šŸŽ² It can even colorize/recolor landscapes from anime games, transforming your animated scenery into a realistic real-life style! (Image source: Genshin Impact) <p align="center"> <img src="assets/anime_landscapes.webp" width="100%"> </p> ## News - [2024-01-28] Support inference via šŸ¤— Hugging Face! Thanks @[Niels](https://github.com/NielsRogge) for the suggestion and example code and @[Skwara](https://github.com/Skwarson96) for fixing bug. - [2024-01-18] Add Replicate demo and API! Thanks @[Chenxi](https://github.com/chenxwh). - [2023-12-13] Release the DDColor-tiny pre-trained model! - [2023-09-07] Add the Model Zoo and release three pretrained models! - [2023-05-15] Code release for training and inference! - [2023-05-05] The online demo is available! ## Online Demo Try our online demos at [ModelScope](https://www.modelscope.cn/models/damo/cv_ddcolor_image-colorization/summary) and [Replicate](https://replicate.com/piddnad/ddcolor). ## Methods *In short:* DDColor uses multi-scale visual features to optimize **learnable color tokens** (i.e. color queries) and achieves state-of-the-art performance on automatic image colorization. <p align="center"> <img src="assets/network_arch.jpg" width="100%"> </p> ## Installation ### Requirements - Python >= 3.7 - PyTorch >= 1.7 ### Installation with conda (recommended) ```sh conda create -n ddcolor python=3.9 conda activate ddcolor pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118 pip install -r requirements.txt # Install basicsr, only required for training python3 setup.py develop ``` ## Quick Start ### Inference Using Local Script (No `basicsr` Required) 1. Download the pretrained model: ```python from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope') print('model assets saved to %s' % model_dir) ``` 2. Run inference with ```sh python infer.py --model_path ./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt --input ./assets/test_images ``` or ```sh sh scripts/inference.sh ``` ### Inference Using Hugging Face Load the model via Hugging Face Hub: ```python from infer_hf import DDColorHF ddcolor_paper_tiny = DDColorHF.from_pretrained("piddnad/ddcolor_paper_tiny") ddcolor_paper = DDColorHF.from_pretrained("piddnad/ddcolor_paper") ddcolor_modelscope = DDColorHF.from_pretrained("piddnad/ddcolor_modelscope") ddcolor_artistic = DDColorHF.from_pretrained("piddnad/ddcolor_artistic") ``` Check `infer_hf.py` for the details of the inference, or directly perform model inference by running: ```sh python infer_hf.py --model_name ddcolor_modelscope --input ./assets/test_images # model_name: [ddcolor_paper | ddcolor_modelscope | ddcolor_artistic | ddcolor_paper_tiny] ``` ### Inference Using ModelScope 1. Install modelscope: ```sh pip install modelscope ``` 2. Run inference: ```python import cv2 from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks img_colorization = pipeline(Tasks.image_colorization, model='damo/cv_ddcolor_image-colorization') result = img_colorization('https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg') cv2.imwrite('result.png', result[OutputKeys.OUTPUT_IMG]) ``` This code will automatically download the `ddcolor_modelscope` model (see [ModelZoo](#model-zoo)) and performs inference. The model file `pytorch_model.pt` can be found in the local path `~/.cache/modelscope/hub/damo`. ### Gradio Demo Install the gradio and other required libraries: ```sh pip install gradio gradio_imageslider timm ``` Then, you can run the demo with the following command: ```sh python gradio_app.py ``` ## Model Zoo We provide several different versions of pretrained models, please check out [Model Zoo](MODEL_ZOO.md). ## Train 1. Dataset Preparation: Download the [ImageNet](https://www.image-net.org/) dataset or create a custom dataset. Use this script to obtain the dataset list file: ```sh python data_list/get_meta_file.py ``` 2. Download the pretrained weights for [ConvNeXt](https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth) and [InceptionV3](https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth) and place them in the `pretrain` folder. 3. Specify 'meta_info_file' and other options in `options/train/train_ddcolor.yml`. 4. Start training: ```sh sh scripts/train.sh ``` ## ONNX export Support for ONNX model exports is available. 1. Install dependencies: ```sh pip install onnx==1.16.1 onnxruntime==1.19.2 onnxsim==0.4.36 ``` 2. Usage example: ```sh python export.py usage: export.py [-h] [--input_size INPUT_SIZE] [--batch_size BATCH_SIZE] --model_path MODEL_PATH [--model_size MODEL_SIZE] [--decoder_type DECODER_TYPE] [--export_path EXPORT_PATH] [--opset OPSET] ``` Demo of ONNX export using a `ddcolor_paper_tiny` model is available [here](notebooks/colorization_pipeline_onnxruntime.ipynb). ## Citation If our work is helpful for your research, please consider citing: ``` @inproceedings{kang2023ddcolor, title={DDColor: Towards Photo-Realistic Image Colorization via Dual Decoders}, author={Kang, Xiaoyang and Yang, Tao and Ouyang, Wenqi and Ren, Peiran and Li, Lingzhi and Xie, Xuansong}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={328--338}, year={2023} } ``` ## Acknowledgments We thank the authors of BasicSR for the awesome training pipeline. > Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong and Chen Change Loy. BasicSR: Open Source Image and Video Restoration Toolbox. https://github.com/xinntao/BasicSR, 2020. Some codes are adapted from [ColorFormer](https://github.com/jixiaozhong/ColorFormer), [BigColor](https://github.com/KIMGEONUNG/BigColor), [ConvNeXt](https://github.com/facebookresearch/ConvNeXt), [Mask2Former](https://github.com/facebookresearch/Mask2Former), and [DETR](https://github.com/facebookresearch/detr). Thanks for their excellent work! ", Assign "at most 3 tags" to the expected json: {"id":"6995","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"