AI prompts
base on Text-to-3D Generation within 5 Minutes <p align="center">
<picture>
<img alt="logo" src="assets/3dtopia.jpeg" width="20%">
</picture>
</p>
<div align="center">
<h1>3DTopia</h1>
<p>
A two-stage text-to-3D generation model. The first stage uses diffusion model to quickly generate candidates. The second stage refines the assets chosen from the first stage.
</p>
<img src="https://visitor-badge.laobi.icu/badge?page_id=3DTopia.3DTopia" />
<p>
</p>
https://github.com/3DTopia/3DTopia/assets/23376858/c9716cf0-6e61-4983-82b2-2e8f579bd46c
</div>
## News
[2024/03/10] Our captions for Objaverse is released [here](https://github.com/3DTopia/3DTopia/releases).
[2024/03/04] Our technical report is released [here](https://arxiv.org/pdf/2403.02234.pdf).
[2024/01/18] We release a text-to-3D model 3DTopia!
## Citation
```
@article{hong20243dtopia,
title={3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors},
author={Hong, Fangzhou and Tang, Jiaxiang and Cao, Ziang and Shi, Min and Wu, Tong and Chen, Zhaoxi and Wang, Tengfei and Pan, Liang and Lin, Dahua and Liu, Ziwei},
journal={arXiv preprint arXiv:2403.02234},
year={2024}
}
```
## 1. Quick Start
### 1.1 Install Environment for this Repository
We recommend using Anaconda to manage the environment.
```bash
conda env create -f environment.yml
```
### 1.2 Install Second Stage Refiner
Please refer to [threefiner](https://github.com/3DTopia/threefiner) to install our second stage mesh refiner. We have tested installing both environments together with Pytorch 1.12.0 and CUDA 11.3.
### 1.3 Download Checkpoints \[Optional\]
We have implemented automatic checkpoint download for both `gradio_demo.py` and `sample_stage1.py`. If you prefer to download manually, you may download checkpoint `3dtopia_diffusion_state_dict.ckpt` or `model.safetensors` from [huggingface](https://huggingface.co/hongfz16/3DTopia).
### Q&A
- If you encounter this error in the second stage `ImportError: /lib64/libc.so.6: version 'GLIBC_2.25' not found`, try to install a lower version of pymeshlab by `pip install pymeshlab==0.2`.
## 2. Inference
### 2.1 First Stage
Run the following command to sample `a robot` as the first stage. Results will be located under the folder `results`.
```bash
python -u sample_stage1.py --text "a robot" --samples 1 --sampler ddim --steps 200 --cfg_scale 7.5 --seed 0
```
Arguments:
- `--ckpt` specifies checkpoint file path;
- `--test_folder` controls which subfolder to put all the results;
- `--seed` will fix random seeds; `--sampler` can be set to `ddim` for DDIM sampling (By default, we use 1000 steps DDPM sampling);
- `--steps` controls sampling steps only for DDIM;
- `--samples` controls number of samples;
- `--text` is the input text;
- `--no_video` and `--no_mcubes` suppress rendering multi-view videos and marching cubes, which are by-default enabled;
- `--mcubes_res` controls the resolution of the 3D volumn sampled for marching cubes; One can lower this resolution to save graphics memory;
- `--render_res` controls the resolution of the rendered video;
### 2.2 Second Stage
There are two steps as the second stage refinement. Here is a simple example. Please refer to [threefiner](https://github.com/3DTopia/threefiner) for more detailed usage.
```bash
# step 1
threefiner sd --mesh results/default/stage1/a_robot_0_0.ply --prompt "a robot" --text_dir --front_dir='-y' --outdir results/default/stage2/ --save a_robot_0_0_sd.glb
# step 2
threefiner if2 --mesh results/default/stage2/a_robot_0_0_sd.glb --prompt "a robot" --outdir results/default/stage2/ --save a_robot_0_0_if2.glb
```
The resulting mesh can be found at `results/default/stage2/a_robot_0_0_if2.glb`
## 3. Acknowledgement
We thank the community for building and open-sourcing the foundation of this work. Specifically, we want to thank [EG3D](https://github.com/NVlabs/eg3d), [Stable Diffusion](https://github.com/CompVis/stable-diffusion) for their codes. We also want to thank [Objaverse](https://objaverse.allenai.org) for the wonderful dataset.
", Assign "at most 3 tags" to the expected json: {"id":"7253","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"