AI prompts
base on MiniCPM4: Ultra-Efficient LLMs on End Devices, achieving 5+ speedup on typical end-side chips <div align="center">
<img src="./assets/minicpm_logo.png" width="500em" ></img>
</div>
<h4 align="center">
<p>
<b>中文</b> | <a href="https://github.com/OpenBMB/MiniCPM/blob/main/README-en.md">English</a>
<p>
</h4>
<p align="center">
<a href="https://openbmb.vercel.app/?category=Chinese+Blog" target="_blank">MiniCPM 技术博客</a> |
<a href="https://modelbest.feishu.cn/wiki/D2tFw8Pcsi5CIzkaHNacLK64npg" target="_blank">MiniCPM 知识库</a> |
<a href="https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">MiniCPM 论文</a> |
<a href="https://github.com/OpenBMB/MiniCPM-V/" target="_blank">MiniCPM-V 仓库</a> |
加入我们的 <a href="https://discord.gg/3cGQn9b3YM" target="_blank">discord</a> 和 <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">微信群</a>
</p>
https://github.com/user-attachments/assets/ab36fd7a-485b-4707-b72f-b80b5c43d024
## 更新日志🔥
- [2025.06.06] **发布 [MiniCPM4](https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b)!该模型在保持同等规模最优性能的同时,实现了极致的效率提升!在典型端侧芯片上能够实现 5 倍以上生成加速!**
- [2024.09.28] [LLMxMapReduce](https://github.com/thunlp/LLMxMapReduce) 开源,支持 MiniCPM3-4B,理论上支持无限长文本输入!
- [2024.09.18] [SGLang](https://github.com/sgl-project/sglang) 已经支持 MiniCPM3-4B (推荐使用)!由于 SGLang v0.3 对 MiniCPM3 中使用的 MLA 结构进行了推理优化,吞吐量相比于 vLLM 提高 70%]
- [2024.09.16] [llama.cpp](https://github.com/ggerganov/llama.cpp/releases/tag/b3765) 已经官方支持 MiniCPM3-4B|[用法](#llamacpp)]
- [2024.09.05] 发布 [MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B)!该模型的表现超越 Phi-3.5-mini-instruct 和 GPT-3.5-Turbo-0125,并且能够比肩 Llama3.1-8B-Instruct、Qwen2-7B-Instruct、GLM-4-9B-Chat 等多个 7B-9B 参数量的模型。
- [2024.07.09] MiniCPM-2B 已经支持使用 [SGLang](#sglang-推理) 推理!
- [2024.07.05] 发布 [MiniCPM-S-1B](https://huggingface.co/openbmb/MiniCPM-S-1B-sft)!该模型在保持下游任务性能无损的前提下,FFN 层实现了 87.89% 的平均稀疏度,将 FFN FLOPs 降低了 84%。
- [2024.04.11] 发布 [MiniCPM-2B-128k](https://huggingface.co/openbmb/MiniCPM-2B-128k)、[MiniCPM-MoE-8x2B](https://huggingface.co/openbmb/MiniCPM-MoE-8x2B) 和 [MiniCPM-1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16)!点击[这里](https://openbmb.vercel.app/?category=Chinese+Blog)查看技术博客。
- [2024.03.16] MiniCPM-2B 的 30 余个中间检查点开放了
- [2024.02.01] 发布 [MiniCPM-2B](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)!该模型在公开评测集上与 Mistral-7B 表现相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。
## 目录
- [更新日志🔥](#更新日志)
- [目录](#目录)
- [模型下载](#模型下载)
- [MiniCPM 4.0](#minicpm-40)
- [评测结果](#评测结果)
- [效率评测](#效率评测)
- [综合评测](#综合评测)
- [长文本评测](#长文本评测)
- [BitCPM4: 模型量化](#bitcpm4-模型量化)
- [BitCPM4评测](#bitcpm4评测)
- [BitCPM4模型推理](#bitcpm4模型推理)
- [模型应用](#模型应用)
- [MiniCPM4-Survey: 综述生成](#minicpm4-survey-综述生成)
- [MiniCPM4-MCP: MCP增强的工具调用](#minicpm4-mcp-mcp增强的工具调用)
- [模型推理](#模型推理)
- [CPM.cu](#cpmcu)
- [HuggingFace](#huggingface)
- [vLLM](#vllm)
- [SGLang](#sglang)
- [模型微调](#模型微调)
- [LLaMA-Factory](#llamA-factory)
- [MiniCPM 3.0](#minicpm-30)
- [MiniCPM 2.0](#minicpm-20)
- [MiniCPM 1.0](#minicpm-10)
- [开源协议](#开源协议)
- [开发机构](#开发机构)
- [工作引用](#工作引用)
## 模型下载
| HuggingFace | ModelScope |
|-------------|------------|
| [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B) | [MiniCPM4-8B](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-8B) |
| [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B) | [MiniCPM4-0.5B](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-0.5B) |
| [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B) | [BitCPM4-1B](https://www.modelscope.cn/models/OpenBMB/BitCPM4-1B) |
| [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B) | [BitCPM4-0.5B](https://www.modelscope.cn/models/OpenBMB/BitCPM4-0.5B) |
| [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec) | [MiniCPM4-8B-Eagle-FRSpec](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-8B-Eagle-FRSpec) |
| [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT) | [MiniCPM4-8B-Eagle-FRSpec-QAT](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-8B-Eagle-FRSpec-QAT) |
| [MiniCPM4-8B-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM) | [MiniCPM4-8B-Eagle-vLLM](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-8B-Eagle-vLLM) |
| [MiniCPM4-8B-marlin-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM) | [MiniCPM4-8B-marlin-Eagle-vLLM](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-8B-marlin-Eagle-vLLM) |
| [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey) | [MiniCPM4-Survey](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-Survey) |
| [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP) | [MiniCPM4-MCP](https://www.modelscope.cn/models/OpenBMB/MiniCPM4-MCP) |
| [MiniCPM4-0.5B-QAT-Int4-unquantized](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-unquantized) | [MiniCPM4-0.5B-QAT-Int4-unquantized](https://modelscope.cn/models/OpenBMB/MiniCPM4-0.5B-QAT-Int4-unquantized) |
| [MiniCPM4-0.5B-QAT-Int4-GPTQ-format](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-GPTQ-format) | [MiniCPM4-0.5B-QAT-Int4-GPTQ-format](https://modelscope.cn/models/OpenBMB/MiniCPM4-0.5B-QAT-Int4-GPTQ-format) |
|[MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B)|[MiniCPM3-4B](https://www.modelscope.cn/models/OpenBMB/MiniCPM3-4B)|
|[MiniCPM-2B-sft](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)|[MiniCPM-2B-sft](https://modelscope.cn/models/OpenBMB/miniCPM-bf16)|
|[MiniCPM-2B-dpo](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16)|[MiniCPM-2B-dpo](https://modelscope.cn/models/OpenBMB/MiniCPM-2B-dpo-bf16/summary)|
|[MiniCPM-2B-128k](https://huggingface.co/openbmb/MiniCPM-2B-128k) |[MiniCPM-2B-128k](https://modelscope.cn/models/openbmb/MiniCPM-2B-128k/summary)|
|[MiniCPM-MoE-8x2B](https://huggingface.co/openbmb/MiniCPM-MoE-8x2B) |[MiniCPM-MoE-8x2B](https://modelscope.cn/models/OpenBMB/MiniCPM-MoE-8x2B)|
|[MiniCPM-1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) | [MiniCPM-1B](https://modelscope.cn/models/OpenBMB/MiniCPM-1B-sft-bf16) |
|[MiniCPM-S-1B](https://huggingface.co/openbmb/MiniCPM-S-1B-sft)|[MiniCPM-S-1B](https://modelscope.cn/models/OpenBMB/MiniCPM-S-1B-sft)|
注: 更多模型版本见[这里](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f)。
## MiniCPM 4.0
MiniCPM 4 是一个极致高效的端侧大模型,从模型架构、学习算法、训练数据与推理系统四个层面进行了高效优化,实现了极致的效率提升。
- 🏗️ 高效模型架构:
- InfLLM v2 -- 可训练的稀疏注意力机制:采用可训练的稀疏注意力机制架构,在 128K 长文本处理中,每个词元仅需与不足 5% 的词元进行相关性计算,显著降低长文本的计算开销
- 🧠 高效学习算法:
- 模型风洞 2.0 -- 高效 Predictable Scaling:引入下游任务的 Scaling 预测方法,实现更精准的模型训练配置搜索
- BitCPM -- 极致的三值量化:将模型参数位宽压缩至 3 值,实现模型位宽 90% 的极致瘦身
- 高效训练工程优化:采用 FP8 低精度计算技术,结合多词元预测(Multi-token Prediction)训练策略
- 📚 高知识密度训练数据:
- UltraClean -- 高质量预训练数据的清洗与合成:构建基于高效验证的迭代式数据清洗策略,开源高质量中英文预训练数据集 [UltraFineweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
- UltraChat v2 -- 高质量有监督微调数据合成:构建大规模高质量有监督微调数据集,涵盖知识密集型数据、推理密集型数据、指令遵循数据、长文本理解数据、工具调用数据等多个维度
- ⚡ 高效推理系统:
- CPM.cu -- 轻量级的高效CUDA推理框架:融合了稀疏注意力机制、模型量化与投机采样,充分体现MiniCPM4的效率优势
- ArkInfer -- 跨平台部署系统:支持多后端环境的一键部署,提供灵活的跨平台适配能力
### 评测结果
#### 效率评测
在 Jetson AGX Orin 和 RTX 4090 两款典型端侧芯片上,MiniCPM4 在长文本处理任务中展现出大幅领先同尺寸模型的处理速度。随着文本长度的增加,MiniCPM4 的性能优势愈发显著。在 Jetson AGX Orin 平台上,相较于 Qwen3-8B,MiniCPM4 实现了约 7 倍的生成速度提升。

#### 综合评测
MiniCPM4 推出端侧 8B、0.5B 两种参数规模版本,均在同级别模型中实现了最佳性能表现。

#### 长文本评测
MiniCPM4 基于 32K 长文本进行预训练,并通过 YaRN 技术实现长度扩展。在 128K 长文本的大海捞针任务中,MiniCPM4 展现出卓越的性能表现。

### BitCPM4: 模型量化
BitCPM4 是基于 MiniCPM 系列模型进行量化感知训练(QAT)后得到的三值量化模型,在训练效率和模型参数效率实现了有效的提升。
- 训练方法改进
- 在小规模模型上进行风洞实验,搜索训练所需的训练超参。
- 通过使用一阶段高精训练+二阶段 QAT 的方法,充分利用已经完成或部分完成训练的高精度模型,极大地压缩了 QAT 阶段所需要的算力。
- 高效参数效率
- 模型使用 1.58Bit 的位宽达到的性能对标与同参数量级别的全精度模型,模型参数效率高。
#### BitCPM4 评测
BitCPM4 在测试中的表现可以对标同级别的业界主流全精度模型。

#### BitCPM4 模型推理
BitCPM4 开源的模型参数为伪量化形式,可以直接使用 Huggingface 框架进行推理。
### 模型应用
#### MiniCPM4-Survey: 综述生成
MiniCPM4-Survey 是由 [THUNLP](https://nlp.csai.tsinghua.edu.cn)、中国人民大学和 [ModelBest](https://modelbest.cn/en) 联合开发的开源大语言模型智能体。它基于 MiniCPM4-8B 基座模型,接受用户质量作为输入,自主生成可信的长篇综述论文。
主要特性包括:
- 计划-检索-写作生成框架 — 我们提出了一个多智能体生成框架,包含三个核心阶段:计划(定义综述的整体结构)、检索(生成合适的检索关键词)和写作(利用检索到的信息,生成连贯的段落)。
- 高质量数据集构建——我们收集并处理大量人类专家写作的综述论文,构建高质量训练集。同时,我们收集大量研究论文,构建检索数据库。
- 多方面奖励设计 — 我们精心设计了包含结构、内容和引用的奖励,用于评估综述的质量,在强化学习训练阶段作奖励函数。
- 多步强化学习训练策略 — 我们提出了一个上下文管理器,以确保在促进有效推理的同时保留必要的信息,并构建了并行环境,维持强化学习训练高效。
##### 使用与演示案例
详见[此处](./demo/minicpm4/SurveyGeneration/README.md)
##### 评估
| Method | Relevance | Coverage | Depth | Novelty | Avg. | Fact Score |
|---------------------------------------------|-----------|----------|-------|---------|-------|------------|
| Naive RAG (driven by G2FT) | 3.25 | 2.95 | 3.35 | 2.60 | 3.04 | 43.68 |
| AutoSurvey (driven by G2FT) | 3.10 | 3.25 | 3.15 | **3.15**| 3.16 | 46.56 |
| Webthinker (driven by WTR1-7B) | 3.30 | 3.00 | 2.75 | 2.50 | 2.89 | -- |
| Webthinker (driven by QwQ-32B) | 3.40 | 3.30 | 3.30 | 2.50 | 3.13 | -- |
| OpenAI Deep Research (driven by GPT-4o) | 3.50 |**3.95** | 3.55 | 3.00 | **3.50** | -- |
| MiniCPM4-Survey | 3.45 | 3.70 | **3.85** | 3.00 | **3.50** | **68.73** |
| *w/o* RL | **3.55** | 3.35 | 3.30 | 2.25 | 3.11 | 50.24 |
*GPT-4o 对综述生成系统的性能比较。“G2FT” 代表 Gemini-2.0-Flash-Thinking,“WTR1-7B” 代表 Webthinker-R1-7B。由于 Webthinker 不包括引用功能,OpenAI Deep Research 在导出结果时不提供引用,因此省略了对它们的 FactScore 评估。我们的技术报告中包含评测的详细信息。*
#### MiniCPM4-MCP: MCP增强的工具调用
MiniCPM4-MCP 是由[清华大学自然语言处理实验室(THUNLP)](https://nlp.csai.tsinghua.edu.cn)、中国人民大学与 [ModelBest](https://modelbest.cn/en) 联合开发的开源本地大语言模型代理,它基于 MiniCPM-4-8B,拥有 80 亿参数。它能够通过 MCP 协议与各种工具和数据资源交互,解决多种真实世界任务。截至目前,MiniCPM4-MCP 已支持:
- 涵盖 16 个 MCP 服务器(servers)中工具的使用:这些服务器所包含的工具横跨了办公类、生活类、通讯类、资讯类、工作管理类等.
- 单工具使用的能力:可使用符合 MCP 协议的工具进行单一工具的一步或多步调用。
- 跨工具组合使用的能力:可组合使用符合 MCP 协议的不同工具。
##### 使用与演示案例
详见[此处](./demo/minicpm4/MCP/README.md)
##### 评估
| MCP 服务器 | | gpt-4o | | | qwen3 | | | minicpm4 | |
| -------------------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- | -------- |
| | 函数名正确率 | 参数名正确率 | 数值正确率 | 函数名正确率 | 参数名正确率 | 数值正确率 | 函数名正确率 | 参数名正确率 | 数值正确率 |
| Airbnb | 89.3 | 67.9 | 53.6 | 92.8 | 60.7 | 50.0 | 96.4 | 67.9 | 50.0 |
| Amap-Maps | 79.8 | 77.5 | 50.0 | 74.4 | 72.0 | 41.0 | 89.3 | 85.7 | 39.9 |
| Arxiv-MCP-Server | 85.7 | 85.7 | 85.7 | 81.8 | 54.5 | 50.0 | 57.1 | 57.1 | 52.4 |
| Calculator | 100.0 | 100.0 | 20.0 | 80.0 | 80.0 | 13.3 | 100.0 | 100.0 | 6.67 |
| Computor-Control-MCP | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 86.7 |
| Desktop-Commander | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
| Filesystem | 63.5 | 63.5 | 31.3 | 69.7 | 69.7 | 26.0 | 83.3 | 83.3 | 42.7 |
|Github | 92.0 | 80.0 | 58.0 | 80.5 | 50.0 | 27.7 | 62.8 | 25.7 | 17.1 |
| Gaode | 71.1 | 55.6 | 17.8 | 68.8 | 46.6 | 24.4 | 68.9 | 46.7 | 15.6 |
| MCP-Code-Executor | 85.0 | 80.0 | 70.0 | 80.0 | 80.0 | 70.0 | 90.0 | 90.0 | 65.0 |
| MCP-Docx | 95.8 | 86.7 | 67.1 | 94.9 | 81.6 | 60.1 | 95.1 | 86.6 | 76.1 |
| PPT | 72.6 | 49.8 | 40.9 | 85.9 | 50.7 | 37.5 | 91.2 | 72.1 | 56.7 |
| PPTx | 64.2 | 53.7 | 13.4 | 91.0 | 68.6 | 20.9 | 91.0 | 58.2 | 26.9 |
| Simple-Time-Server | 90.0 | 70.0 | 70.0 | 90.0 | 90.0 | 90.0 | 90.0 | 60.0 | 60.0 |
| Slack | 100.0 | 90.0 | 70.0 | 100.0 | 100.0 | 65.0 | 100.0 | 100.0 | 100.0 |
| Whisper | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 90.0 | 30.0 |
| **平均值** | **80.2** | **70.2** | **49.1** | **83.5** | **67.7** | **43.8** | **88.3** | **76.1** | **51.2** |
### 模型推理
#### CPM.cu
我们**推荐**使用 [CPM.cu](https://github.com/OpenBMB/CPM.cu) 对 MiniCPM4 模型进行推理。CPM.cu 是面壁开发的一个集合了高效稀疏、投机采样、量化等技术的 CUDA 推理框架,能够完全发挥 MiniCPM4 的效率优势。
你可以通过以下脚本安装 CPM.cu 并进行推理:
```bash
git clone https://github.com/OpenBMB/CPM.cu.git --recursive
cd CPM.cu
python3 setup.py install
```
你可以通过以下命令进行推理并查看模型的运行速度。
```bash
python3 tests/long_prompt_gen.py # 生成 prompt.txt
python3 tests/test_generate.py --prompt-file prompt.txt
```
更多关于 CPM.cu 的细节,请参考 [CPM.cu 仓库](https://github.com/OpenBMB/CPM.cu)。
#### HuggingFace
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(0)
path = 'openbmb/MiniCPM4-8B'
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
# User can directly use the chat interface
# responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7)
# print(responds)
# User can also use the generate interface
messages = [
{"role": "user", "content": "Write an article about Artificial Intelligence."},
]
prompt_text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device)
model_outputs = model.generate(
**model_inputs,
max_new_tokens=1024,
top_p=0.7,
temperature=0.7
)
output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids']))
]
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
```
本模型支持稀疏注意力机制 InfLLM v2,可高效处理长序列推理。如需启用该功能,请先安装依赖库 [infllmv2_cuda_impl](https://github.com/OpenBMB/infllmv2_cuda_impl)
运行以下命令即可安装:
```bash
git clone -b feature_infer https://github.com/OpenBMB/infllmv2_cuda_impl.git
cd infllmv2_cuda_impl
git submodule update --init --recursive
pip install -e . # or python setup.py install
```
启用 InfLLM v2 需在 `config.json` 配置文件中添加 `sparse_config` 字段:
```json
{
...,
"sparse_config": {
"kernel_size": 32,
"kernel_stride": 16,
"init_blocks": 1,
"block_size": 64,
"window_size": 2048,
"topk": 64,
"use_nope": false,
"dense_len": 8192
}
}
```
这些参数控制 InfLLM v2 的行为:
* `kernel_size`(默认值:32):语义核的大小。
* `kernel_stride`(默认值:16):相邻语义核的步长。
* `init_blocks`(默认值:1):每个 query token 关注的初始的块数量,用于确保关注序列开头部分。
* `block_size`(默认值:64):key-value blocks 的块大小。
* `window_size`(默认值:2048):局部滑动窗口大小。
* `topk`(默认值:64):每个 token 仅与最相关的 top-k 个 key-value blocks 计算注意力。
* `use_nope`(默认值:false):是否在块选择中使用NOPE技术以提升性能。
* `dense_len`(默认值:8192):稀疏注意力对短序列收益有限,当 token 长度低于此阈值时自动切换为标准注意力。设为 `-1` 则强制始终使用稀疏注意力。
Minicpm4 原生支持 32,768 tokens 的上下文长度。若对话总长度(输入 + 输出)远超此限制,建议通过 RoPE 缩放技术扩展上下文。我们已验证通过调整 LongRoPE 因子,模型可稳定支持 131,072 tokens 的超长上下文。
修改方法:在 `config.json` 文件中调整 `rope_scaling` 字段参数即可。
```json
{
...,
"rope_scaling": {
"rope_type": "longrope",
"long_factor": [0.9977997200264581, 1.014658295992452, 1.0349680404997148, 1.059429246056193, 1.0888815016813513, 1.1243301355211495, 1.166977103606075, 1.2182568066927284, 1.2798772354275727, 1.3538666751582975, 1.4426259039919596, 1.5489853358570191, 1.6762658237220625, 1.8283407612492941, 2.0096956085876183, 2.225478927469756, 2.481536379650452, 2.784415934557119, 3.1413289096347365, 3.560047844772632, 4.048719380066383, 4.752651957515948, 5.590913044973868, 6.584005926629993, 7.7532214876576155, 9.119754865903639, 10.704443927019176, 12.524994176518703, 14.59739595363613, 16.93214476166354, 19.53823297353041, 22.417131025031697, 25.568260840911098, 28.991144156566317, 32.68408069090375, 36.65174474170465, 40.90396065611201, 45.4664008671033, 50.37147343433591, 55.6804490772103, 61.470816952306556, 67.8622707390618, 75.00516023410414, 83.11898235973767, 92.50044360202462, 103.57086856690864, 116.9492274587385, 118.16074567836519, 119.18497548708795, 120.04810876261652, 120.77352815196981, 121.38182790207875, 121.89094985353891, 122.31638758099915, 122.6714244963338, 122.9673822552567, 123.21386397019609, 123.41898278254268, 123.58957065488238, 123.73136519024158, 123.84917421274221, 123.94701903496814, 124.02825801299717, 124.09569231686116],
"short_factor": [0.9977997200264581, 1.014658295992452, 1.0349680404997148, 1.059429246056193, 1.0888815016813513, 1.1243301355211495, 1.166977103606075, 1.2182568066927284, 1.2798772354275727, 1.3538666751582975, 1.4426259039919596, 1.5489853358570191, 1.6762658237220625, 1.8283407612492941, 2.0096956085876183, 2.225478927469756, 2.481536379650452, 2.784415934557119, 3.1413289096347365, 3.560047844772632, 4.048719380066383, 4.752651957515948, 5.590913044973868, 6.584005926629993, 7.7532214876576155, 9.119754865903639, 10.704443927019176, 12.524994176518703, 14.59739595363613, 16.93214476166354, 19.53823297353041, 22.417131025031697, 25.568260840911098, 28.991144156566317, 32.68408069090375, 36.65174474170465, 40.90396065611201, 45.4664008671033, 50.37147343433591, 55.6804490772103, 61.470816952306556, 67.8622707390618, 75.00516023410414, 83.11898235973767, 92.50044360202462, 103.57086856690864, 116.9492274587385, 118.16074567836519, 119.18497548708795, 120.04810876261652, 120.77352815196981, 121.38182790207875, 121.89094985353891, 122.31638758099915, 122.6714244963338, 122.9673822552567, 123.21386397019609, 123.41898278254268, 123.58957065488238, 123.73136519024158, 123.84917421274221, 123.94701903496814, 124.02825801299717, 124.09569231686116],
"original_max_position_embeddings": 32768
}
}
```
#### vLLM
* 安装
参照 vLLM [官方仓库](https://github.com/vllm-project/vllm),通过*源码*安装最新版本。
```
pip install -U vllm \
--pre \
--extra-index-url https://wheels.vllm.ai/nightly
```
* 使用 vLLM 推理 MiniCPM4-8B 模型:
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_name = "openbmb/MiniCPM4-8B"
prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
llm = LLM(
model=model_name,
trust_remote_code=True,
max_num_batched_tokens=32768,
dtype="bfloat16",
gpu_memory_utilization=0.8,
)
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
* 在 vLLM 中使用 Eagle 投机解码:只需如下初始化推理引擎
```python
llm = LLM(
model=model_name,
trust_remote_code=True,
max_num_batched_tokens=32768,
dtype="bfloat16",
gpu_memory_utilization=0.8,
speculative_config={
"method": "eagle",
"model": "openbmb/MiniCPM4-8B-Eagle-vLLM",
"num_speculative_tokens": 2,
"max_model_len": 32768,
},
)
```
* 在 vLLM 中推理量化后的 MiniCPM4-8B:只需如下初始化推理引擎
```python
llm = LLM(
model="openbmb/MiniCPM4-8B-marlin-vLLM",
trust_remote_code=True,
max_num_batched_tokens=32768,
dtype="bfloat16",
gpu_memory_utilization=0.8,
)
```
* 在 vLLM 中使用 Eagle 投机解码推理量化后的 MiniCPM4-8B:只需如下初始化推理引擎
```python
llm = LLM(
model="openbmb/MiniCPM4-8B-marlin-vLLM",
trust_remote_code=True,
max_num_batched_tokens=32768,
dtype="bfloat16",
gpu_memory_utilization=0.8,
speculative_config={
"method": "eagle",
"model": "openbmb/MiniCPM4-8B-marlin-Eagle-vLLM",
"num_speculative_tokens": 2,
"max_model_len": 32768,
},
)
```
> **注意**:如果你使用 vLLM 中的 OpenAI 兼容的服务端,`chat` API 默认会将 `add_special_tokens` 设置为 `False`。这会导致缺失一些特殊标记(例如,BOS),而这些标记对 **MiniCPM4** 模型至关重要。为确保模型行为正常,你需要在 API 调用中显式设置 `extra_body={"add_special_tokens": True}`,如下所示:
```python
import openai
client = openai.Client(base_url="http://localhost:8000/v1", api_key="EMPTY")
response = client.chat.completions.create(
model="openbmb/MiniCPM4-8B",
messages=[
{"role": "user", "content": "Write an article about Artificial Intelligence."},
],
temperature=0.7,
max_tokens=1024,
extra_body={"add_special_tokens": True}, # 确保添加了诸如 BOS 等特殊标记
)
print(response.choices[0].message.content)
```
#### SGLang
* 安装
参考 SGLang [官方仓库](ttps://github.com/sgl-project/sglang),通过*源码*安装。
```
git clone -b openbmb https://github.com/OpenBMB/sglang.git
cd sglang
pip install --upgrade pip
pip install -e "python[all]"
```
* 启动推理服务
```shell
python -m sglang.launch_server --model openbmb/MiniCPM4-8B --trust-remote-code --port 30000 --chat-template chatml
```
* 然后用户可以通过运行以下命令来使用聊天界面:
```python
import openai
client = openai.Client(base_url=f"http://localhost:30000/v1", api_key="None")
response = client.chat.completions.create(
model="openbmb/MiniCPM4-8B",
messages=[
{"role": "user", "content": "Write an article about Artificial Intelligence."},
],
temperature=0.7,
max_tokens=1024,
)
print(response.choices[0].message.content)
```
* 使用投机加速
```shell
python3 -m sglang.launch_server --model-path [model] \
--speculative_draft_model_path [draft_model] \
--host 0.0.0.0 --trust-remote-code \
--speculative-algorithm EAGLE --speculative-num-steps 1 --speculative-eagle-topk 1 --speculative-num-draft-tokens 2 \
--mem-fraction 0.5
```
### 模型微调
#### LLaMA-Factory
目前模型微调支持 [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory),使用方法参考 [LLaMA-Factory 微调](https://t0mvtyikswc.feishu.cn/docx/Gv6ld1yCTodckBxysKgcpepJnKg?from=from_copylink)
## MiniCPM 3.0
<details>
<summary>查看 MiniCPM 3.0 的详细信息</summary>
MiniCPM 3.0 是一个 4B 参数量的语言模型,相比 MiniCPM1.0/2.0,功能更加全面,综合能力大幅提升,多数评测集上的效果比肩甚至超越众多 7B-9B 模型。
* **支持工具调用🛠️(Function Calling)和代码解释器💻(Code Interpreter)**:[Berkeley Function Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html) 上取得 9B 规模以下 SOTA,超越 GLM-4-9B-Chat、Qwen2-7B-Instruct。
* **超强的推理能力🧮**:数学能力方面,[MathBench](https://open-compass.github.io/MathBench/) 上的效果超越 GPT-3.5-Turbo 以及多个 7B-9B 模型。在非常具有挑战性的 [LiveCodeBench](https://livecodebench.github.io/) 上,效果超越 Llama3.1-8B-Instruct。
* **出色的中英文指令遵循能力🤖**:英文指令遵循 [IFEval](https://huggingface.co/datasets/google/IFEval)、中文指令遵循 [FollowBench-zh](https://huggingface.co/datasets/YuxinJiang/FollowBench) 效果超越 GLM-4-9B-Chat、Qwen2-7B-Instruct。
* **长文本能力**:原生支持 32k 上下文长度,32k 长度内大海捞针全绿。提出 [LLMxMapReduce](https://github.com/thunlp/LLMxMapReduce) ,理论可处理的上下文长度达到 +∞,在综合性长文本评测基准 [InfiniteBench](https://github.com/OpenBMB/InfiniteBench) 平均得分超越GPT-4、KimiChat等标杆模型。
* **RAG能力**:我们发布了 [MiniCPM RAG 套件](https://huggingface.co/collections/openbmb/minicpm-rag-suite-66d976b4204cd0a4f8beaabb)。基于 MiniCPM 系列模型的 [MiniCPM-Embedding](https://huggingface.co/openbmb/MiniCPM-Embedding)、[MiniCPM-Reranker](https://huggingface.co/openbmb/MiniCPM-Reranker) 在中文、中英跨语言检索测试中取得 SOTA 表现;针对 RAG 场景的 [MiniCPM3-RAG-LoRA](https://huggingface.co/openbmb/MiniCPM3-RAG-LoRA) 在开放域问答等多项任务上超越 Llama3-8B、Baichuan2-13B 等模型。
### 评测结果
#### 综合评测
<table>
<tr>
<td>评测集</td>
<td>Qwen2-7B-Instruct</td>
<td>GLM-4-9B-Chat</td>
<td>Gemma2-9B-it</td>
<td>Llama3.1-8B-Instruct</td>
<td>GPT-3.5-Turbo-0125</td>
<td>Phi-3.5-mini-Instruct(3.8B)</td>
<td>MiniCPM3-4B </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>英文能力</strong></td>
</tr>
<tr>
<td>MMLU</td>
<td>70.5</td>
<td>72.4</td>
<td>72.6</td>
<td>69.4</td>
<td>69.2</td>
<td>68.4</td>
<td>67.2 </td>
</tr>
<tr>
<td>BBH</td>
<td>64.9</td>
<td>76.3</td>
<td>65.2</td>
<td>67.8</td>
<td>70.3</td>
<td>68.6</td>
<td>70.2 </td>
</tr>
<tr>
<td>MT-Bench</td>
<td>8.41</td>
<td>8.35</td>
<td>7.88</td>
<td>8.28</td>
<td>8.17</td>
<td>8.60</td>
<td>8.41 </td>
</tr>
<tr>
<td>IFEVAL (Prompt Strict-Acc.)</td>
<td>51.0</td>
<td>64.5</td>
<td>71.9</td>
<td>71.5</td>
<td>58.8</td>
<td>49.4</td>
<td>68.4 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>中文能力</strong></td>
</tr>
<tr>
<td>CMMLU</td>
<td>80.9</td>
<td>71.5</td>
<td>59.5</td>
<td>55.8</td>
<td>54.5</td>
<td>46.9</td>
<td>73.3 </td>
</tr>
<tr>
<td>CEVAL</td>
<td>77.2</td>
<td>75.6</td>
<td>56.7</td>
<td>55.2</td>
<td>52.8</td>
<td>46.1</td>
<td>73.6 </td>
</tr>
<tr>
<td>AlignBench v1.1</td>
<td>7.10</td>
<td>6.61</td>
<td>7.10</td>
<td>5.68</td>
<td>5.82</td>
<td>5.73</td>
<td>6.74 </td>
</tr>
<tr>
<td>FollowBench-zh (SSR)</td>
<td>63.0</td>
<td>56.4</td>
<td>57.0</td>
<td>50.6</td>
<td>64.6</td>
<td>58.1</td>
<td>66.8 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>数学能力</strong></td>
</tr>
<tr>
<td>MATH</td>
<td>49.6</td>
<td>50.6</td>
<td>46.0</td>
<td>51.9</td>
<td>41.8</td>
<td>46.4</td>
<td>46.6 </td>
</tr>
<tr>
<td>GSM8K</td>
<td>82.3</td>
<td>79.6</td>
<td>79.7</td>
<td>84.5</td>
<td>76.4</td>
<td>82.7</td>
<td>81.1 </td>
</tr>
<tr>
<td>MathBench</td>
<td>63.4</td>
<td>59.4</td>
<td>45.8</td>
<td>54.3</td>
<td>48.9</td>
<td>54.9</td>
<td>65.6 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>代码能力</strong></td>
</tr>
<tr>
<td>HumanEval+</td>
<td>70.1</td>
<td>67.1</td>
<td>61.6</td>
<td>62.8</td>
<td>66.5</td>
<td>68.9</td>
<td>68.3 </td>
</tr>
<tr>
<td>MBPP+</td>
<td>57.1</td>
<td>62.2</td>
<td>64.3</td>
<td>55.3</td>
<td>71.4</td>
<td>55.8</td>
<td>63.2 </td>
</tr>
<tr>
<td>LiveCodeBench v3</td>
<td>22.2</td>
<td>20.2</td>
<td>19.2</td>
<td>20.4</td>
<td>24.0</td>
<td>19.6</td>
<td>22.6 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>工具调用能力</strong></td>
</tr>
<tr>
<td>BFCL v2</td>
<td>71.6</td>
<td>70.1</td>
<td>19.2</td>
<td>73.3</td>
<td>75.4</td>
<td>48.4</td>
<td>76.0 </td>
</tr>
<tr>
<td colspan="15" align="left"><strong>综合能力</strong></td>
</tr>
<tr>
<td>平均分</td>
<td>65.3</td>
<td>65.0</td>
<td>57.9</td>
<td>60.8</td>
<td>61.0</td>
<td>57.2</td>
<td><strong>66.3</strong></td>
</tr>
</table>
#### 工具调用能力
我们在 [Berkeley Function Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html) 上测试了模型的工具调用能力,MiniCPM3-4B 在该榜单上的表现超越了多个 7B-9B 参数量的模型,优于 GPT-3.5-Turbo-0125。
<table>
<tr>
<td>模型</td>
<td>总体准确率</td>
<td>AST Summary</td>
<td>Exec Summary</td>
<td>Irrelevance Detection</td>
<td>Relevance Detection </td>
</tr>
<tr>
<td>MiniCPM3-4B</td>
<td>76.03%</td>
<td>68.55%</td>
<td>85.54%</td>
<td>53.71%</td>
<td>90.24% </td>
</tr>
<tr>
<td>Llama3.1-8B-Instruct</td>
<td>73.28%</td>
<td>64.61%</td>
<td>86.48%</td>
<td>43.12%</td>
<td>85.37% </td>
</tr>
<tr>
<td>Qwen2-7B-Instruct</td>
<td>71.61%</td>
<td>65.71%</td>
<td>79.57%</td>
<td>44.70%</td>
<td>90.24% </td>
</tr>
<tr>
<td>GLM-4-9B-Chat</td>
<td>70.08%</td>
<td>60.69%</td>
<td>80.02%</td>
<td>55.02%</td>
<td>82.93% </td>
</tr>
<tr>
<td>Phi-3.5-mini-instruct</td>
<td>48.44%</td>
<td>38.89%</td>
<td>54.04%</td>
<td>46.78%</td>
<td>65.85% </td>
</tr>
<tr>
<td>Gemma2-9B-it</td>
<td>19.18%</td>
<td>5.41%</td>
<td>18.50%</td>
<td>88.88%</td>
<td>7.32%</td>
</tr>
</table>
#### 长文本能力
在 32k 的上下文长度进行[大海捞针](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)测试,结果如下图:

同时我们提出[LLMxMapReduce](https://github.com/thunlp/LLMxMapReduce),利用分治的策略,理论上可以处理无限长度的文本。我们在[InfiniteBench](https://github.com/OpenBMB/InfiniteBench)上测试了模型的长文本处理能力,在LLMxMapReduce框架的加持下,MiniCPM3-4B在这个榜单的平均得分能够超越 GPT-4、KimiChat 等标杆模型。
| | Context length| Qwen2-70b | Kimi-Chat(2024.06) | GPT-4 (From InfiniteBench) | MiniCPM 3.0 x MR | Qwen2-70b x MR | Llama3-70bx MR |
| ----------------------------- | ---------- | --------- | ------------------ | -------------------------- | --------------- | ------------ | ------------- |
| Math.Find | 87.9k | 59.71% | 18.57% | 60.00% | 83.43% | 54.29% | **91.43%** |
| Retrieve.KV | 89.9k | 29.00% | 69.20% | 89.00% | 93.80% | 98.80% | **98.89%** |
| En.Dia | 103.6K | 23.00% | 23.00% | 7.50% | 12.50% | **46.50%** | 17.50% |
| Code.Debug | 114.7k | 45.43% | 38.32% | 54.31% | 25.63% | 54.82% | **62.94%** |
| Retrieve.Number | 122.4k | **100.00%** | 97.45% | **100.00%** | 99.32% | **100.00%** | 99.79% |
| Retrieve.PassKey | 122.4k | **100.00%** | 99.32% | **100.00%** | 98.81% | **100.00%** | **100.00%** |
| En.Sum | 171.5K | 31.85% | 29.94% | 14.73% | 25.89% | **32.39%** | 30.63% |
| En.MC | 184.4k | 81.66% | 79.91% | 68.12% | 66.38% |**83.84%** | 82.10% |
| En.QA | 192.6k | 21.97% | 18.80% | 22.44% | 28.39% | 23.13% | **34.70%** |
| Zh.QA | 2068.6k | 21.40% | 19.84% | **25.96%** | 23.66% | 19.10% | N/A |
| avg w/o Zh.QA | / | 51.92% | 52.96% | 55.33% | 59.29% | 64.98% | **68.64%** |
| avg | / | 48.86% | 49.65% | 52.39% | 55.55% | **60.39%** | N/A |
### 模型推理
#### Huggingface
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(0)
path = 'openbmb/MiniCPM3-4B'
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
responds, history = model.chat(tokenizer, "请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。", temperature=0.7, top_p=0.7)
print(responds)
```
#### SGLang(推荐)
* 安装
参考 SGLang [官方仓库](ttps://github.com/sgl-project/sglang),通过*源码*安装最新版本。
* 启动推理服务
```shell
python -m sglang.launch_server --model openbmb/MiniCPM3-4B --trust-remote-code --port 30000 --chat-template chatml
```
* 使用示例
```python
from sglang import function, system, user, assistant, gen, set_default_backend, RuntimeEndpoint
@function
def multi_turn_question(s, question_1, question_2):
s += user(question_1)
s += assistant(gen("answer_1", max_tokens=1024))
s += user(question_2)
s += assistant(gen("answer_2", max_tokens=1024))
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
state = multi_turn_question.run(
question_1="介绍一下人工智能",
question_2="写一篇关于它的文章",
)
for m in state.messages():
print(m["role"], ":", m["content"])
```
#### vLLM
* 安装 vllm
```shell
pip install "vllm>=0.6.2"
```
* 推理
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
model_name = "openbmb/MiniCPM3-4B"
prompt = [{"role": "user", "content": "请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_name,
trust_remote_code=True,
tensor_parallel_size=1
)
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024)
outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
#### llama.cpp
我们提供了 MiniCPM3 的 [GGUF 版本](https://huggingface.co/openbmb/MiniCPM3-4B-GGUF),可以直接使用 llama.cpp 推理。
* 安装 llama.cpp
```shell
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
```
* 推理
```shell
./llama-cli -c 1024 -m minicpm3-4b-fp16.gguf -n 1024 --top-p 0.7 --temp 0.7 --prompt "<|im_start|>user\n请写一篇关于人工智能的文章,详细介绍人工智能的未来发展和隐患。<|im_end|>\n<|im_start|>assistant\n"
```
### 模型微调
#### LLaMA-Factory
目前模型微调支持 [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory),使用方法参考 [LLaMA-Factory 微调](https://modelbest.feishu.cn/docx/Z7USdW4lloZzkZxQ14icJ3senjb?from=from_copylink)。
### 进阶功能
对于以下进阶功能,我们的样例代码中使用 [vLLM](#vllm) 进行推理。
#### 工具调用
我们提供了使用 MiniCPM3 调用工具的示例代码:
```bash
cd demo/minicpm3/function_call
python function_call.py
```
如果你想启动一个能够调用工具的推理服务,使用以下代码:
```bash
cd demo/minicpm3/function_call
pip install -r requirements.txt
python openai_api_server.py \
--model openbmb/MiniCPM3-4B \
--served-model-name MiniCPM3-4B \
--chat-template chatml.jinja \
--dtype auto \
--api-key token-abc123 \
--tensor-parallel-size 1 \
--trust-remote-code
```
下面是一个调用搜索工具回答问题的演示:

#### 代码解释器
我们提供了一个 MiniCPM3 使用代码解释器的示例代码:
```bash
cd demo/minicpm3/code_interpreter
pip install -r requirements.txt
python code_interpreter.py openbmb/MiniCPM3-4B
```
下面是一个使用代码解释器生成二维码的演示:

</details>
## MiniCPM 2.0
<details>
<summary>查看 MiniCPM 2.0 的详细信息</summary>
MiniCPM 2.0 系列模型对 MiniCPM 进行了多个维度的升级,包括以下模型版本:
- MiniCPM-2B-128k:将 MiniCPM-2B 的上下文长度从 4k 扩展至 128k,在 InfiniteBench 测试集上优于 ChatGLM3-6B-128k、Yi-6B-200k 等更大参数量的模型。
- MiniCPM-MoE-8x2B:基于 MiniCPM-2B 进行 MoE 扩展,综合表现相比于 MiniCPM-2B 平均提高 4.5 个百分点。
- MiniCPM-1B:相比于 MiniCPM-2B 成本下降 60%,综合表现仍然优于 LLaMA2-13B。
- MiniCPM-S-1B:在保持下游任务性能无损的前提下,FFN 层实现了 87.89% 的平均稀疏度,将 FFN FLOPs 降低了 84%。结合 PowerInfer 推理框架,解码速度提升约 2.8 倍。
### 评测结果
#### MiniCPM-2B-128k 模型评测
| Model | avg | avg w/o code&math | passkey | number_string | kv_retrieval | longbook_choice_eng | longbook_qa_chn | longbook_qa_eng | longbook_sum_eng | longdialogue_qa_eng | math_calc | math_find | code_debug | code_run |
|-------------------------------------|-------|-------------------|---------|---------------|--------------|---------------------|-----------------|-----------------|------------------|---------------------|-----------|-----------|------------|----------|
| LWM-Text-128k | 24.45 | 33.62 | 100 | 97.8 | 0.6 | 28.82 | 15.93 | 14.31 | 9.99 | 1.5 | 0 | 3.43 | 20.05 | 1 |
| Yarn-Mistral-7b-128k | 19.84 | 27.36 | 92.71 | | 0 | 27.95 | 15.49 | 9.55 | 9.06 | 7.5 | 0 | 17.14 | 0.76 | 1.25 |
| Mistral-7B-Instruct-v0.2(ABF 1000w) | 27.75 | 36.9 | 100 | 78.98 | 3.6 | 37.12 | 11.74 | 17.37 | 21.12 | 9.5 | 0 | 29.43 | 17.51 | 0 |
| Yi-6B-200k | 22.15 | 32.54 | 100 | 94.92 | 0 | 36.68 | 15.07 | 9.2 | 0.92 | 3.5 | 0 | 4.29 | 0.51 | 0.75 |
| chatglm3-6b-128k | 25.58 | 36.57 | 89.93 | 99.66 | 5.2 | 46.29 | 10.7 | 8.38 | 25.91 | 6.5 | 0 | 8 | 5.33 | 1 |
| MiniCPM-2.4B-128k | 27.32 | 37.68 | 98.31 | 99.83 | 9 | 29.69 | 23.06 | 16.33 | 15.73 | 9.5 | 0 | 4.29 | 22.08 | 0 |
#### MiniCPM-MoE-8x2B 模型评测
<div align="left">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th nowrap="nowrap" >BBH</th>
<th nowrap="nowrap" >MMLU</th>
<th nowrap="nowrap" >CEval</th>
<th nowrap="nowrap" >CMMLU</th>
<th nowrap="nowrap" >HumanEval</th>
<th nowrap="nowrap" >MBPP†</th>
<th nowrap="nowrap" >GSM8K</th>
<th nowrap="nowrap" >MATH</th
</tr>
</thead>
<tbody align="center">
<tr>
<td nowrap="nowrap" align="left">Llama2-34B*</td>
<td>44.1</td>
<td>62.6</td>
<td>-</td>
<td>-</td>
<td>22.6</td>
<td>33.0</td>
<td>42.2</td>
<td>6.24</td>
</tr>
<tr>
<td nowrap="nowrap" align="left">Mistral-7B-Instruct-v0.2</td>
<td>39.81</td>
<td>60.51</td>
<td>42.55</td>
<td>41.92</td>
<td>36.59</td>
<td>39.63</td>
<td>40.49</td>
<td>4.95</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Gemma-7B*</td>
<td>55.1</td>
<td>64.3</td>
<td>-</td>
<td>-</td>
<td>32.3</td>
<td>44.4</td>
<td>46.4</td>
<td>24.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Qwen1.5-7B*</td>
<td>40.2</td>
<td>61</td>
<td>74.1</td>
<td>73.1</td>
<td>36</td>
<td>37.4</td>
<td>62.5</td>
<td>20.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Deepseek-MoE(16B)*</td>
<td>-</td>
<td>45.0</td>
<td>40.6</td>
<td>42.5</td>
<td>26.8</td>
<td>39.2</td>
<td>18.8</td>
<td>4.3</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><b>MiniCPM-2.4B</b></td>
<td>36.87</td>
<td>53.46</td>
<td>51.13</td>
<td>51.07</td>
<td>50.00</td>
<td>35.93</td>
<td>53.83</td>
<td>10.24</td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><b>MiniCPM-MoE-8x2B</b></td>
<td>39.22</td>
<td>58.90</td>
<td>58.11</td>
<td>58.80</td>
<td>55.49</td>
<td>41.68</td>
<td>61.56</td>
<td>10.52</td>
</tr>
</tbody>
</table>
</div>
注:* 表示结果取自技术报告。† 表示评测集为MBPP全集。
#### MiniCPM-S-1B 评测结果
- 代码生成:在 HumanEval(0-shot)和 MBPP(3-shot)上的平均 pass@1 得分。
- 常识推理:在 PIQA、SIQA、HellaSwag、WinoGrande 和 COPA 上的平均 0-shot 准确率。
- 阅读理解:在 BoolQ、LAMBADA 和 TyDi QA 上的平均 0-shot 准确率。
其他测试集:我们报告在GSM8K(8-shot)、MMLU(5-shot)、BBH(3-shot)和 AGI-Eval(0-shot)上的平均准确率。
| Setting | Average<br>Sparsity | Average<br>Performance | Code<br>Generation | Commonsense<br>Reasoning | Reading<br>Comprehension | GSM8K | MMLU | BBH | AGI Eval |
| :-------------------: | :----------------: | :----------------------: | :----------------------: | :---: | :---: | :---: | :---------: | :-----: | :-----------------: |
| LLaMA2-7B | - | 37.96 | 16.37 | 69.59 | 61.87 | 12.96 | 44.45 | 32.96 | 27.53 |
| ReluLLaMA-7B | 66.98 | 37.62 | 15.85 | 69.64 | 70.54 | 5.84 | 38.64 | 35.07 | 27.73 |
| **ProSparse-7B**\* | 88.11 | 38.31 | 19.47 | 66.29 | 63.33 | 12.74 | 45.21 | 33.59 | 27.55 |
| **ProSparse-7B** | **89.32** | **38.46** | 19.42 | 66.27 | 63.50 | 12.13 | 45.48 | 34.99 | 27.46 |
| LLaMA2-13B | - | 44.06 | 20.19 | 72.58 | 71.55 | 22.21 | 54.69 | 37.89 | 29.33 |
| ReluLLaMA-13B | 71.56 | 42.74 | 20.19 | 70.44 | 73.29 | 18.50 | 50.58 | 37.97 | 28.22 |
| **ProSparse-13B**\* | 87.97 | **45.07** | 29.03 | 69.75 | 67.54 | 25.40 | 54.78 | 40.20 | 28.76 |
| **ProSparse-13B** | **88.80** | 44.90 | 28.42 | 69.76 | 66.91 | 26.31 | 54.35 | 39.90 | 28.67 |
| MiniCPM-1B | - | 44.44 | 36.85 | 63.67 | 60.90 | 35.48 | 50.44 | 35.03 | 28.71 |
| **MiniCPM-S-1B**\* | 86.25 | **44.72** | 41.38 | 64.55 | 60.69 | 34.72 | 49.36 | 34.04 | 28.27 |
| **MiniCPM-S-1B** | **87.89** | **44.72** | 42.04 | 64.37 | 60.73 | 34.57 | 49.51 | 34.08 | 27.77 |
注:
1. ReluLLaMA-7B 和 ReluLLaMA-13B 的下载链接分别是 [7B](https://huggingface.co/SparseLLM/ReluLLaMA-7B) and [13B](https://huggingface.co/SparseLLM/ReluLLaMA-13B)。"ProSparse-7B\*"、"ProSparse-13B\*" 和 "MiniCPM-S-1B\*" 代表没有激活阈值偏移的 ProSparse 版本。
2. 对于 PIQA、SIQA、HellaSwag、WinoGrande、COPA、BoolQ、LAMBADA、TyDi QA 和 AGI-Eval,我们根据各个选项的 PPL 来进行答案选择。对于 GSM8K、MMLU 和 BBH,我们直接生成答案。
### 模型推理
#### HuggingFace、vLLM推理
参考 MiniCPM 1.0 中的[模型推理](#huggingface-推理)部分。
#### Powerinfer 推理
针对 MiniCPM-S-1B 模型,我们可以使用 Powerinfer 进行推理加速,使用方法如下:
1. 保证cmake版本3.17以上,如果已经安装过,则跳过此步骤
```bash
# 下载安装包
sudo wget https://cmake.org/files/v3.23/cmake-3.23.0.tar.gz
# 解压安装包
sudo tar -zxvf cmake-3.23.0.tar.gz
# 配置安装环境
sudo ./configure
sudo make -j8
# 编译安装
sudo make install
# 查看安装后版本
cmake --version
# 返回版本号则安装成功
#cmake version 3.23.0
```
2. 安装powerinfer:
```bash
git clone https://github.com/SJTU-IPADS/PowerInfer
cd PowerInfer
pip install -r requirements.txt # install Python helpers' dependencies
```
3. cpu版本powerinfer编译,如果你的机器只有cpu,或者只想使用cpu进行推理,则运行以下命令:
```bash
cmake -S . -B build
cmake --build build --config Release
```
4. gpu版本powerinfer编译,如果你的机器有gpu,则可以运行以下命令:
```bash
cmake -S . -B build -DLLAMA_CUBLAS=ON
cmake --build build --config Release
```
5. 获取稀疏模型
```bash
git clone https://huggingface.co/openbmb/MiniCPM-S-1B-sft-gguf/tree/main
#or
git clone https://modelscope.cn/models/OpenBMB/MiniCPM-S-1B-sft-gguf
```
6. 模型推理:
```bash
cd PowerInfer
# 以下是命令模版,output_token_count为最大输出tokens,thread_num 为线程数,prompt为输入prompt字符
#./build/bin/main -m /PATH/TO/MODEL -n $output_token_count -t $thread_num -p $prompt
# 以下是示例
./build/bin/main -m /root/ld/ld_model_pretrain/1b-s-minicpm/MiniCPM-S-1B-sft.gguf -n 2048 -t 8 -p '<用户>hello,tell me a story please.<AI>'
```
</details>
## MiniCPM 1.0
<details>
<summary>查看 MiniCPM 1.0 的详细信息</summary>
MiniCPM-2B 语言模型有 24亿(2.4B)的非词嵌入参数量, 总计 2.7B 参数量。
- 经过 SFT 后,MiniCPM-2B 在公开评测集上与 Mistral-7B 表现相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。
- 经过 DPO 后,MiniCPM-2B 在 MTBench 上也超越了 Llama2-70B-Chat、Vicuna-33B、Mistral-7B-Instruct-v0.1、Zephyr-7B-alpha 等众多代表性开源大模型。
注意:为了保证在学术研究用途上模型的通用性,我们**未对 MiniCPM-2B 进行任何身份认同训练**。同时由于我们用 ShareGPT 开源语料作为部分训练数据,模型可能会输出类似 GPT 系列模型的身份认同信息。
### 评测结果
#### 评测设置
* 由于大模型评测难以统一,且大量评测也没有公开的prompt和测试代码,对于具体评测方式,我们只能尽量做到适合各类模型。
* 整体而言,我们测试时采用统一的prompt输入,并按照各模型对应的模板进行输入调整。
* **评测脚本及prompt已开源在我们的Github仓库中,也欢迎更多开发者来不断改进我们的评测方式。**
* 文本评测部分,采用了我们的开源大模型能力评测框架[UltraEval](https://github.com/OpenBMB/UltraEval)。以下为开源模型复现流程:
* 安装UltraEval
```shell
git clone https://github.com/OpenBMB/UltraEval.git
cd UltraEval
pip install -e .
```
* 下载相关数据并解压处理
```shell
wget -O RawData.zip "https://cloud.tsinghua.edu.cn/f/71b5232264ae4833a4d0/?dl=1"
unzip RawData.zip
python data_process.py
```
* 执行评测脚本(提供了模板,可自定义)
```shell
bash run_eval.sh
```
#### 部署模式
* 因为MiniCPM采用Mup的结构,与现有模型在具体计算上有细微差别,我们是基于vllm=0.2.2版本进行了我们模型的实现。
* **对于非MiniCPM模型,我们采用了vllm=0.2.7的最新版本进行推理。**
#### 评测度量
* 对于QA任务(选择题任务),我们选用两种方式进行测试:
* PPL:将选项作为题目生成的延续,并根据各个选项的PPL来进行答案选择;
* 第二种是直接生成答案选项。
* 对于不同模型,这两种方式得到的结果差异较大。MiniCPM两种模式上的结果较为接近,而Mistral-7B-v0.1等模型在PPL上表现较好,直接生成上效果较差。
* 在具体评测时,我们以两种评测方式得分的最高者为最终结果,以此保证对比的公平性(以下表格中*号表示采用PPL)。
#### 文本模型评测
**越级比较:**
|模型|平均分|英文均分|中文均分|C-Eval|CMMLU|MMLU|HumanEval|MBPP|GSM8K|MATH|BBH|ARC-E|ARC-C|HellaSwag|
|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
|Llama2-7B|35.40|36.21|31.765|32.42|31.11|44.32|12.2|27.17|13.57|1.8|33.23|75.25|42.75|75.62*|
|Qwen-7B|49.46|47.19|59.655|58.96|60.35|57.65|17.07|42.15|41.24|5.34|37.75|83.42|64.76|75.32*|
|Deepseek-7B|39.96|39.15|43.64|42.82|44.45|47.82|20.12|41.45|15.85|1.53|33.38|74.58*|42.15*|75.45*|
|Mistral-7B|48.97|49.96|44.54|46.12|42.96|62.69|27.44|45.2|33.13|5.0|41.06|83.92|70.73|80.43*|
|Llama2-13B|41.48|42.44|37.19|37.32|37.06|54.71|17.07|32.55|21.15|2.25|37.92|78.87*|58.19|79.23*|
|MPT-30B|38.17|39.82|30.72|29.34|32.09|46.56|21.95|35.36|10.31|1.56|38.22|78.66*|46.08*|79.72*|
|Falcon-40B|43.62|44.21|40.93|40.29|41.57|53.53|24.39|36.53|22.44|1.92|36.24|81.94*|57.68|83.26*|
|MiniCPM-2B|52.33|52.6|51.1|51.13|51.07|53.46|50.00|47.31|53.83|10.24|36.87|85.44|68.00|68.25|
**同级比较:**
|模型|平均分|英文均分|中文均分|C-Eval|CMMLU|MMLU|HumanEval|MBPP|GSM8K|MATH|BBH|ARC-E|ARC-C|HellaSwag|
|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
|TinyLlama-1.1B|25.36|25.55|24.525|25.02|24.03|24.3|6.71|19.91|2.27|0.74|28.78|60.77*|28.15*|58.33*|Qwen-1.8B|34.72|31.87|47.565|49.81|45.32|43.37|7.93|17.8|19.26|2.42|29.07|63.97*|43.69|59.28*|
|Qwen-1.8B|34.72|31.87|47.57|49.81|45.32|43.37|7.93|17.80|19.26|2.42|29.07|63.97*|43.69|59.28*|
|Gemini Nano-3B|-|-|-|-|-|-|-|27.2(report)|22.8(report)|-|42.4(report)|-|-|-|
|StableLM-Zephyr-3B|43.46|46.31|30.62|30.34|30.89|45.9|35.37|31.85|52.54|12.49|37.68|73.78|55.38|71.87*|
|Phi-2-2B|48.84|54.41|23.78|23.37|24.18|52.66|47.56|55.04|57.16|3.5|43.39|86.11|71.25|73.07*|
|MiniCPM-2B|52.33|52.6|51.10|51.13|51.07|53.46|50.00|47.31|53.83|10.24|36.87|85.44|68.00|68.25|
**Chat模型比较:**
|模型|平均分|英文均分|中文均分|C-Eval|CMMLU|MMLU|HumanEval|MBPP|GSM8K|MATH|BBH|ARC-E|ARC-C|HellaSwag|
|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|
|ChatGLM2-6B|37.98|35.17|50.63|52.05|49.21|45.77|10.37|9.38|22.74|5.96|32.6|74.45|56.82|58.48*|
|Mistral-7B-Instruct-v0.1|44.36|45.89|37.51|38.06|36.96|53.56|29.27|39.34|28.73|3.48|39.52|81.61|63.99|73.47*|
|Mistral-7B-Instruct-v0.2|50.91|52.83|42.235|42.55|41.92|60.51|36.59|48.95|40.49|4.95|39.81|86.28|73.38|84.55*|
|Qwen-7B-Chat|44.93|42.05|57.9|58.57|57.23|56.03|15.85|40.52|42.23|8.3|37.34|64.44*|39.25*|74.52*|
|Yi-6B-Chat|50.46|45.89|70.995|70.88|71.11|62.95|14.02|28.34|36.54|3.88|37.43|84.89|70.39|74.6*|
|Baichuan2-7B-Chat|44.68|42.74|53.39|53.28|53.5|53|21.34|32.32|25.25|6.32|37.46|79.63|60.15|69.23*|
|Deepseek-7B-chat|49.34|49.56|48.335|46.95|49.72|51.67|40.85|48.48|48.52|4.26|35.7|76.85|63.05|76.68*|
|Llama2-7B-Chat|38.16|39.17|33.59|34.54|32.64|47.64|14.02|27.4|21.15|2.08|35.54|74.28|54.78|75.65*|
|MiniCPM-2B|52.33|52.6|51.10|51.13|51.07|53.46|50.00|47.31|53.83|10.24|36.87|85.44|68.00|68.25|
**DPO后模型比较:**
|模型|MT-bench|
|---|---|
|GPT-4-turbo|9.32|
|GPT-3.5-turbo|8.39|
|Mistral-8*7b-Instruct-v0.1|8.30|
|Claude-2.1|8.18|
|Zephyr-7B-beta|7.34|
|**MiniCPM-2B**|**7.25**|
|Vicuna-33B|7.12|
|Zephyr-7B-alpha|6.88|
|LLaMA-2-70B-chat|6.86|
|Mistral-7B-Instruct-v0.1|6.84|
|MPT-34B-instruct|6.39|
### 快速上手
#### 在线体验
- [Colab](https://colab.research.google.com/drive/1tJcfPyWGWA5HezO7GKLeyeIso0HyOc0l?usp=sharing)
#### 基于Gradio的网页版Demo
* 使用如下命令启动基于Gradio的网页版demo:
```shell
# generation powered by vllm
python demo/minicpm/vllm_based_demo.py --model_path <vllmcpm_repo_path>
# generation powered by huggingface
python demo/minicpm/hf_based_demo.py --model_path <hf_repo_path>
```
#### HuggingFace 推理
##### MiniCPM-2B
安装`transformers>=4.36.0`以及`accelerate`后,运行以下代码:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
torch.manual_seed(0)
path = 'openbmb/MiniCPM-2B-dpo-bf16'
tokenizer = AutoTokenizer.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
responds, history = model.chat(tokenizer, "山东省最高的山是哪座山, 它比黄山高还是矮?差距多少?", temperature=0.5, top_p=0.8, repetition_penalty=1.02)
print(responds)
```
##### MiniCPM-2B (Llama Format)
我们将MiniCPM的模型权重转化成了Llama代码可以直接调用的[格式](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16-llama-format),以便大家尝试:
```python
import torch
from transformers import LlamaTokenizerFast, LlamaForCausalLM
model_path = "openbmb/MiniCPM-2B-dpo-bf16-llama-format"
tokenizer = LlamaTokenizerFast.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map='cuda', trust_remote_code=True)
prompt="Now you act like a terminal situated within a beginner's C++ practice repository folder, please provide the output for the command: `ls -l`"
input_ids = tokenizer.encode("<用户>{}<AI>".format(prompt), return_tensors='pt', add_special_tokens=True).cuda()
responds = model.generate(input_ids, temperature=0.3, top_p=0.8, repetition_penalty=1.02, max_length=1024)
responds = tokenizer.decode(responds[0], skip_special_tokens=True)
print(responds)
```
#### vLLM 推理
安装 [vLLM](https://github.com/vllm-project/vllm)。
```shell
pip install "vllm>=0.4.1"
```
具体推理代码见[这里](#vllm)。
#### SGLang 推理
安装 [SGLang](https://github.com/sgl-project/sglang)。
* 首先需要启动一个服务:
```bash
python -m sglang.launch_server --model-path openbmb/MiniCPM-2B-dpo-fp16 --trust-remote-code --port 30000
```
* 下面是一个推理代码的样例:
```python
from sglang import function, gen, set_default_backend, RuntimeEndpoint
@function
def text_qa(s, question):
s += "<用户>" + question + "<AI>"
s += gen("answer", max_tokens=1024, temperature=0.7, top_p=0.7)
set_default_backend(RuntimeEndpoint("http://localhost:30000"))
state = text_qa.run(
question="What is the capital of China?",
)
print(state["answer"])
```
#### llama.cpp、Ollama、fastllm、mlx_lm推理
MiniCPM支持[llama.cpp](https://github.com/ggerganov/llama.cpp/) 、[ollama](https://github.com/ollama/ollama)、[fastllm](https://github.com/ztxz16/fastllm)、[mlx_lm](https://github.com/ml-explore/mlx-examples)推理。感谢[@runfuture](https://github.com/runfuture)对llama.cpp和ollama的适配。
请参考 MiniCPM 知识库中的[边端部署教程](https://modelbest.feishu.cn/wiki/VL5kw9DsEiRDmJkEyTUcydE0nie)。
#### 模型量化
请参考 MiniCPM 知识库中的[量化指南](https://modelbest.feishu.cn/wiki/EatbwdLuvitbbMk2X5wcX6h5n7c)。
#### 模型微调
- 一张 1080/2080 可实现高效参数微调:[代码](https://github.com/OpenBMB/MiniCPM/tree/main/finetune)
- mlx 微调:[教程](https://modelbest.feishu.cn/wiki/AIU3wbREcirOm9kkvd7cxujFnMb#share-ASrDdvFAloHtycxfy85cLNhAnd3)
- [xtuner](https://github.com/InternLM/xtuner): [MiniCPM高效率微调的不二选择](https://modelbest.feishu.cn/wiki/AIU3wbREcirOm9kkvd7cxujFnMb#AMdXdzz8qoadZhxU4EucELWznzd)
- [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory.git):[MiniCPM微调一键式解决方案](https://modelbest.feishu.cn/wiki/AIU3wbREcirOm9kkvd7cxujFnMb#BAWrdSjXuoFvX4xuIuzc8Amln5E)
</details>
## 开源协议
#### 模型协议
* 本仓库中代码与 MiniCPM 模型权重依照 [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) 协议开源
#### 声明
* 作为一个语言模型,MiniCPM 通过学习大量的文本来生成内容,但它无法理解、表达个人观点或价值判断,它所输出的任何内容都不代表模型开发者的观点和立场。
* 因此用户在使用 MiniCPM 生成的内容时,应自行负责对其进行评估和验证。
* 如果由于使用 MiniCPM 开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
## 开发机构
本项目由以下机构共同开发:
- <img src="assets/modelbest.png" width="28px"> [面壁智能](https://modelbest.cn/)
- <img src="assets/thunlp.png" width="28px"> [清华大学自然语言处理实验室](https://nlp.csai.tsinghua.edu.cn/)
- <img src="assets/RUC.png" width="28px"> [人大高瓴人工智能学院](https://linyankai.github.io/)
## 工作引用
* 如果觉得 MiniCPM 有助于您的工作,请引用我们的论文:[MiniCPM1](https://arxiv.org/abs/2404.06395),[MiniCPM4](https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf)
```
@article{minicpm4,
title={MiniCPM4: Ultra-Efficient LLMs on End Devices},
author={MiniCPM Team},
year={2025}
}
@inproceedings{huminicpm,
title={MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies},
author={Hu, Shengding and Tu, Yuge and Han, Xu and Cui, Ganqu and He, Chaoqun and Zhao, Weilin and Long, Xiang and Zheng, Zhi and Fang, Yewei and Huang, Yuxiang and others},
booktitle={First Conference on Language Modeling},
year={2024}
}
```
", Assign "at most 3 tags" to the expected json: {"id":"7462","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"