AI prompts
base on Modeling, training, eval, and inference code for OLMo <div align="center">
<!-- <img src="https://github.com/allenai/OLMo/assets/8812459/774ac485-a535-4768-8f7c-db7be20f5cc3" width="300"/> -->
<img src="https://allenai.org/olmo/olmo-7b-animation.gif" alt="OLMo Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
<br>
<br>
<h1>OLMo: Open Language Model</h1>
</div>
<p align="center">
<a href="https://github.com/allenai/OLMo/blob/main/LICENSE">
<img alt="GitHub License" src="https://img.shields.io/github/license/allenai/OLMo">
</a>
<a href="https://github.com/allenai/OLMo/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/allenai/OLMo.svg">
</a>
<a href="https://arxiv.org/pdf/2402.00838.pdf">
<img alt="Paper URL" src="https://img.shields.io/badge/arxiv-2402.00838-blue">
</a>
</p>
OLMo is a repository for training and using AI2's state-of-the-art open language models. It is designed by scientists, for scientists.
## Installation
First, install [PyTorch](https://pytorch.org) following the instructions specific to your operating system.
For training and fine-tuning, we recommend installing from source:
```bash
git clone https://github.com/allenai/OLMo.git
cd OLMo
pip install -e .[all]
```
You can also install from PyPI with:
```bash
pip install ai2-olmo
```
## Pretraining
OLMo pretraining follows a two-stage training procedure.
In the first stage, we train on large amounts of mostly web-based data: [OLMo-mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124)
In the second stage, we train on a smaller amount of high-quality, targeted data: [Dolmino-mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124)
You can find *all* the checkpoints, at minimum every 1000 training steps, on Huggingface:
* [Huggingface for the 7B variant](https://huggingface.co/allenai/OLMo-2-1124-7B)
* [Huggingface for the 13B variant](https://huggingface.co/allenai/OLMo-2-1124-13B)
### Steps to reproduce
To reproduce any of the training processes described below, run this:
```bash
torchrun --nproc_per_node=8 scripts/train.py {path_to_train_config}
```
For the training config, use any of the configs listed below.
If you want to override any of the settings in the training config without having to write a new config every time,
you can do this:
```bash
torchrun --nproc_per_node=8 scripts/train.py {path_to_train_config} \
--setting1=value \
--setting2=value \
--setting3.subsetting1=value
```
The training configs below refer to training data that gets streamed in live over HTTP.
To reproduce at large scale, we recommend downloading the files locally and changing the paths to point to your
local file system.
*Note*: Some of the files that the training configs refer to are still being uploaded (as of 2024-11-27).
They should all appear in the next few days as the uploads complete.
### Stage 1
Stage 1 is the biggest stage, where we train on 4T or 5T tokens on largely web-based data.
| | OLMo2 7B | OLMo2 13B |
|-----------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Number of tokens| 4 Trillion | 5 Trillion |
| Checkpoint | [stage1-step928646-tokens3896B](https://huggingface.co/allenai/OLMo-2-1124-7B/tree/stage1-step928646-tokens3896B) | [stage1-step596057-tokens5001B](https://huggingface.co/allenai/OLMo-2-1124-13B/tree/stage1-step596057-tokens5001B) |
| Training config | [OLMo2-7B-stage1.yaml](configs/official-1124/OLMo2-7B-stage1.yaml) | [OLMo2-13B-stage1.yaml](configs/official-1124/OLMo2-13B-stage1.yaml) |
| WandB | wandb.ai/…/OLMo2-7B (link to come) | wandb.ai/…/OLMo2-13B (link to come) |
### Stage 2 for the 7B
For the 7B model, we train three times with different data order on 50B high quality tokens, and then average ("soup") the models.
| | Checkpoint | Training config | WandB |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------|
| random seed 42 | [stage2-ingredient1-step11931-tokens50B](https://huggingface.co/allenai/OLMo-2-1124-7B/tree/stage2-ingredient1-step11931-tokens50B) | [OLMo2-7B-stage2-seed42.yaml](configs/official-1124/OLMo2-7B-stage2-seed42.yaml) | link to come |
| random seed 42069 | [stage2-ingredient2-step11931-tokens50B](https://huggingface.co/allenai/OLMo-2-1124-7B/tree/stage2-ingredient2-step11931-tokens50B) | [OLMo2-7B-stage2-seed42069.yaml](configs/official-1124/OLMo2-7B-stage2-seed42069.yaml) | link to come |
| random seed 666 | [stage2-ingredient3-step11931-tokens50B](https://huggingface.co/allenai/OLMo-2-1124-7B/tree/stage2-ingredient3-step11931-tokens50B) | [OLMo2-7B-stage2-seed666.yaml](configs/official-1124/OLMo2-7B-stage2-seed666.yaml) | link to come |
| **final souped model** | [main](https://huggingface.co/allenai/OLMo-2-1124-7B/tree/main) | no config, we just averaged the weights in Python | |
The training configs linked here are set up to download the latest checkpoint after stage 1, and start training from there.
### Stage 2 for the 13B
For the 13B model, we train three times with different data order on 100B high quality tokens, and one more time
on 300B high quality tokens. Then we average ("soup") the models.
| | Checkpoint | Training config | WandB |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|
| random seed 1110, 100B | [stage2-ingredient1-step11931-tokens100B](https://huggingface.co/allenai/OLMo-2-1124-13B/tree/stage2-ingredient1-step11931-tokens100B) | [OLMo2-13B-stage2-seed1110-100B.yaml](configs/official-1124/OLMo2-13B-stage2-seed1110-100B.yaml) | link to come |
| random seed 2662, 100B | [stage2-ingredient2-step11931-tokens100B](https://huggingface.co/allenai/OLMo-2-1124-13B/tree/stage2-ingredient2-step11931-tokens100B) | [OLMo2-13B-stage2-seed2662-100B.yaml](configs/official-1124/OLMo2-13B-stage2-seed2662-100B.yaml) | link to come |
| random seed 6209, 100B | [stage2-ingredient3-step11931-tokens100B](https://huggingface.co/allenai/OLMo-2-1124-13B/tree/stage2-ingredient3-step11931-tokens100B) | [OLMo2-13B-stage2-seed6209-100B.yaml](configs/official-1124/OLMo2-13B-stage2-seed6209-100B.yaml) | link to come |
| random seed 2662, 300B | [stage2-ingredient4-step11931-tokens300B](https://huggingface.co/allenai/OLMo-2-1124-13B/tree/stage2-ingredient4-step35773-tokens300B) | [OLMo2-13B-stage2-seed2662-300B.yaml](configs/official-1124/OLMo2-13B-stage2-seed2662-300B.yaml) | link to come |
| **final souped model** | [main](https://huggingface.co/allenai/OLMo-2-1124-13B/tree/main) | no config, we just averaged the weights in Python | |
The training configs linked here are set up to download the latest checkpoint after stage 1, and start training from there.
## Instruction tuned variants
For instruction tuned variants of these models, go to
* [OLMo2 7B Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct)
* [OLMo2 13B Instruct](https://huggingface.co/allenai/OLMo-2-1124-13B-Instruct)
## Inference
You can use our Hugging Face integration to run inference on the OLMo Transformers checkpoints:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B")
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMo-2-1124-7B")
message = ["Language modeling is "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
# optional verifying cuda
# inputs = {k: v.to('cuda') for k,v in inputs.items()}
# olmo = olmo.to('cuda')
response = olmo.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
Alternatively, with the Hugging Face pipeline abstraction:
```python
from transformers import pipeline
olmo_pipe = pipeline("text-generation", model="allenai/OLMo-2-1124-7B")
print(olmo_pipe("Language modeling is"))
```
### Quantization
```python
olmo = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-1124-7B", torch_dtype=torch.float16, load_in_8bit=True) # requires bitsandbytes
```
The quantized model is sensitive to input types and CUDA handling. To avoid potential issues, we recommend explicitly converting input IDs to CUDA using: `inputs.input_ids.to('cuda')`
## Evaluation
Additional tools for evaluating OLMo models are available at the [OLMo Eval](https://github.com/allenai/OLMo-eval) repo.
## Modal.com Hosting
An example script is provided for hosting an OLMo 2 model on Modal.com using the OpenAI API in `./scripts/olmo2_modal_openai.py`.
To run that:
1. Follow the instructions under Getting Started in [the Modal.com Guide](https://modal.com/docs/guide) to install
the Modal library and command line tools.</li>
2. Follow the instructions under [Secrets](https://modal.com/docs/guide/secrets) in the Modal.com Guide to create a Modal secret named "example-secret-token"
that defines a value for the variable MODAL_TOKEN for your server.</li>
3. Then run
```bash
modal deploy ./scripts/olmo2_modal_openai.py
```
You can check your endpoint using curl similar to the following:
```bash
curl -X POST \
-H "Authorization: Bearer [the secret token from above]" \
-H "Content-Type: application/json" \
-d @body.json \
https://[the web endpoint modal creates above]/v1/chat/completions
```
where `body.json` is of the form:
```
{
"model": "OLMo-2-1124-13B-Instruct",
"messages": [
{
"role": "user",
"content": "Who was Alan Turing?"
}
],
"max_tokens": 100,
"temperature": 0.9,
"stream": true
}
```
## Citing
```bibtex
@article{OLMo,
title={OLMo: Accelerating the Science of Language Models},
author={Dirk Groeneveld and Iz Beltagy and Pete Walsh and Akshita Bhagia and Rodney Kinney and Oyvind Tafjord and A. Jha and Hamish Ivison and Ian Magnusson and Yizhong Wang and Shane Arora and David Atkinson and Russell Authur and Khyathi Raghavi Chandu and Arman Cohan and Jennifer Dumas and Yanai Elazar and Yuling Gu and Jack Hessel and Tushar Khot and William Merrill and Jacob Daniel Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and Valentina Pyatkin and Abhilasha Ravichander and Dustin Schwenk and Saurabh Shah and Will Smith and Emma Strubell and Nishant Subramani and Mitchell Wortsman and Pradeep Dasigi and Nathan Lambert and Kyle Richardson and Luke Zettlemoyer and Jesse Dodge and Kyle Lo and Luca Soldaini and Noah A. Smith and Hanna Hajishirzi},
year={2024},
url={https://api.semanticscholar.org/CorpusID:267365485},
journal={arXiv preprint},
}
```
", Assign "at most 3 tags" to the expected json: {"id":"7482","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"