AI prompts
base on PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration. Chat with your ENTIRE Codebase. <p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="docs/logo/dark.png" />
<source media="(prefers-color-scheme: light)" srcset="docs/logo/light.png" />
<img alt="PraisonAI Logo" src="docs/logo/light.png" />
</picture>
</p>
<p align="center">
<a href="https://github.com/MervinPraison/PraisonAI"><img src="https://static.pepy.tech/badge/PraisonAI" alt="Total Downloads" /></a>
<a href="https://github.com/MervinPraison/PraisonAI"><img src="https://img.shields.io/github/v/release/MervinPraison/PraisonAI" alt="Latest Stable Version" /></a>
<a href="https://github.com/MervinPraison/PraisonAI"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License" /></a>
</p>
<div align="center">
# Praison AI
<a href="https://trendshift.io/repositories/9130" target="_blank"><img src="https://trendshift.io/api/badge/repositories/9130" alt="MervinPraison%2FPraisonAI | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
</div>
Praison AI, leveraging both AutoGen and CrewAI or any other agent framework, represents a low-code, centralised framework designed to simplify the creation and orchestration of multi-agent systems for various LLM applications, emphasizing ease of use, customization, and human-agent interaction.
<div align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="docs/images/architecture-dark.png" />
<source media="(prefers-color-scheme: light)" srcset="docs/images/architecture-light.png" />
<img alt="PraisonAI Architecture" src="docs/images/architecture-light.png" />
</picture>
</div>
## Different User Interfaces:
| Interface | Description | URL |
|---|---|---|
| **UI** | Multi Agents such as CrewAI or AutoGen | [https://docs.praison.ai/ui/ui](https://docs.praison.ai/ui/ui) |
| **Chat** | Chat with 100+ LLMs, single AI Agent | [https://docs.praison.ai/ui/chat](https://docs.praison.ai/ui/chat) |
| **Code** | Chat with entire Codebase, single AI Agent | [https://docs.praison.ai/ui/code](https://docs.praison.ai/ui/code) |
| **Realtime** | Real-time voice interaction with AI | [https://docs.praison.ai/ui/realtime](https://docs.praison.ai/ui/realtime) |
| Other Features | Description | Docs |
|---|---|---|
| **Train** | Fine-tune LLMs using your custom data | [https://docs.praison.ai/train](https://docs.praison.ai/train) |
## Google Colab Multi Agents
| | Cookbook | Open in Colab |
| ------------- | --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Basic | PraisonAI | <a target="_blank" href="https://colab.research.google.com/github/MervinPraison/PraisonAI/blob/main/cookbooks/praisonai-googlecolab.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" /></a> |
| Include Tools | PraisonAI Tools | <a target="_blank" href="https://colab.research.google.com/github/MervinPraison/PraisonAI/blob/main/cookbooks/praisonai-tools-googlecolab.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" /></a> |
## Installation Options
### Using pip
```bash
pip install praisonai
```
### Framework-specific Installation
```bash
# Install with CrewAI support
pip install "praisonai[crewai]"
# Install with AutoGen support
pip install "praisonai[autogen]"
# Install with both frameworks
pip install "praisonai[crewai,autogen]"
```
### UI and Additional Features
```bash
# Install UI support
pip install "praisonai[ui]"
# Install Chat interface
pip install "praisonai[chat]"
# Install Code interface
pip install "praisonai[code]"
# Install Realtime voice interaction
pip install "praisonai[realtime]"
# Install Call feature
pip install "praisonai[call]"
```
## Quick Start
```bash
# Set your OpenAI API key
export OPENAI_API_KEY="Enter your API key"
# Initialize with CrewAI (default)
praisonai --init "create a movie script about dog in moon"
# Or initialize with AutoGen
praisonai --framework autogen --init "create a movie script about dog in moon"
# Run the agents
praisonai
```
## Full Automatic Mode
```bash
# With CrewAI (default)
praisonai --auto "create a movie script about Dog in Moon"
# With AutoGen
praisonai --framework autogen --auto "create a movie script about Dog in Moon"
```
## Framework-specific Features
### CrewAI
When installing with `pip install "praisonai[crewai]"`, you get:
- CrewAI framework support
- PraisonAI tools integration
- Task delegation capabilities
- Sequential and parallel task execution
### AutoGen
When installing with `pip install "praisonai[autogen]"`, you get:
- AutoGen framework support
- PraisonAI tools integration
- Multi-agent conversation capabilities
- Code execution environment
## Key Features
- 🤖 Automated AI Agents Creation
- 🔄 Use CrewAI or AutoGen Framework
- 💯 100+ LLM Support
- 💻 Chat with ENTIRE Codebase
- 🖥️ Interactive UIs
- 📄 YAML-based Configuration
- 🛠️ Custom Tool Integration
- 🔍 Internet Search Capability (using Crawl4AI and Tavily)
- 👁️ Vision Language Model (VLM) Support
- 🎙️ Real-time Voice Interaction
## TL;DR Multi Agents
```bash
pip install praisonai
export OPENAI_API_KEY="Enter your API key"
praisonai --init create a movie script about dog in moon
praisonai
```
## Table of Contents
- [Installation](#installation)
- [Initialise](#initialise)
- [Run](#run)
- [Full Automatic Mode](#full-automatic-mode)
- [User Interface](#user-interface)
- [Praison AI Chat](#praison-ai-chat)
- [Create Custom Tools](#create-custom-tools)
- [Agents Playbook](#agents-playbook)
- [Include praisonai package in your project](#include-praisonai-package-in-your-project)
- [Commands to Install Dev Dependencies](#commands-to-install-dependencies)
- [Other Models](#other-models)
- [Contributing](#contributing)
- [Star History](#star-history)
## Installation Multi Agents
```bash
pip install praisonai
```
## Initialise
```bash
export OPENAI_API_KEY="Enter your API key"
```
Generate your OPENAI API KEY from here: https://platform.openai.com/api-keys
Note: You can use other providers such as Ollama, Mistral ... etc. Details are provided at the bottom.
```bash
praisonai --init create a movie script about dog in moon
```
This will automatically create agents.yaml file in the current directory.
### To initialise with a specific agent framework (Optional):
```bash
praisonai --framework autogen --init create movie script about cat in mars
```
## Run
```bash
praisonai
```
or
```bash
python -m praisonai
```
### Specify the agent framework (Optional):
```bash
praisonai --framework autogen
```
### Full Automatic Mode
```bash
praisonai --auto create a movie script about Dog in Moon
```
## User Interface
## PraisonAI User Interfaces:
| Interface | Description | URL |
| --------- | ------------------------------------------ | --------------------------------------------------------------------- |
| **UI** | Multi Agents such as CrewAI or AutoGen | [https://docs.praisonai.com/ui/ui](https://docs.praison.ai/ui/ui) |
| **Chat** | Chat with 100+ LLMs, single AI Agent | [https://docs.praisonai.com/ui/chat](https://docs.praison.ai/ui/chat) |
| **Code** | Chat with entire Codebase, single AI Agent | [https://docs.praisonai.com/ui/code](https://docs.praison.ai/ui/code) |
```bash
pip install -U "praisonai[ui]"
export OPENAI_API_KEY="Enter your API key"
chainlit create-secret
export CHAINLIT_AUTH_SECRET=xxxxxxxx
praisonai ui
```
or
```
python -m praisonai ui
```
## Praison AI Chat
- https://docs.praison.ai/chat/
```bash
pip install "praisonai[chat]"
export OPENAI_API_KEY="Enter your API key"
praisonai chat
```
### Internet Search
Praison AI Chat and Praison AI Code now includes internet search capabilities using Crawl4AI and Tavily, allowing you to retrieve up-to-date information during your conversations.
### Vision Language Model Support
You can now upload images and ask questions based on them using Vision Language Models. This feature enables visual understanding and analysis within your chat sessions.
## Praison AI Code
```bash
pip install "praisonai[code]"
export OPENAI_API_KEY="Enter your API key"
praisonai code
```
### Internet Search
Praison AI Code also includes internet search functionality, enabling you to find relevant code snippets and programming information online.
## Create Custom Tools
- https://docs.praison.ai/tools/custom/
## Agents Playbook
### Simple Playbook Example
```yaml
framework: crewai
topic: Artificial Intelligence
roles:
screenwriter:
backstory: "Skilled in crafting scripts with engaging dialogue about {topic}."
goal: Create scripts from concepts.
role: Screenwriter
tasks:
scriptwriting_task:
description: "Develop scripts with compelling characters and dialogue about {topic}."
expected_output: "Complete script ready for production."
```
## Use 100+ Models
- https://docs.praison.ai/models/
## Include praisonai package in your project
- https://docs.praison.ai/developers/wrapper
- https://docs.praison.ai/developers/wrapper-tools/
## Option 1: Using RAW YAML
```python
from praisonai import PraisonAI
# Example agent_yaml content
agent_yaml = """
framework: "crewai"
topic: "Space Exploration"
roles:
astronomer:
role: "Space Researcher"
goal: "Discover new insights about {topic}"
backstory: "You are a curious and dedicated astronomer with a passion for unraveling the mysteries of the cosmos."
tasks:
investigate_exoplanets:
description: "Research and compile information about exoplanets discovered in the last decade."
expected_output: "A summarized report on exoplanet discoveries, including their size, potential habitability, and distance from Earth."
"""
# Create a PraisonAI instance with the agent_yaml content
praisonai = PraisonAI(agent_yaml=agent_yaml)
# Run PraisonAI
result = praisonai.run()
# Print the result
print(result)
```
## Option 2: Using separate agents.yaml file
Note: Please create agents.yaml file before hand.
```python
from praisonai import PraisonAI
def basic(): # Basic Mode
praisonai = PraisonAI(agent_file="agents.yaml")
praisonai.run()
if __name__ == "__main__":
basic()
```
## Commands to Install Dependencies:
1. **Install all dependencies, including dev dependencies:**
```sh
poetry install
```
2. **Install only documentation dependencies:**
```sh
poetry install --with docs
```
3. **Install only test dependencies:**
```sh
poetry install --with test
```
4. **Install only dev dependencies:**
```sh
poetry install --with dev
```
This configuration ensures that your development dependencies are correctly categorized and installed as needed.
### Using uv (Fast Python Package Installer)
```bash
# Install uv if you haven't already
pip install uv
# Install from requirements
uv pip install -r pyproject.toml
# Install with extras
uv pip install -r pyproject.toml --extra code
uv pip install -r pyproject.toml --extra "crewai,autogen"
```
## Contributing
- Fork on GitHub: Use the "Fork" button on the repository page.
- Clone your fork: `git clone https://github.com/yourusername/praisonAI.git`
- Create a branch: `git checkout -b new-feature`
- Make changes and commit: `git commit -am "Add some feature"`
- Push to your fork: `git push origin new-feature`
- Submit a pull request via GitHub's web interface.
- Await feedback from project maintainers.
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=MervinPraison/PraisonAI&type=Date)](https://docs.praison.ai)
## License
Praison AI is an open-sourced software licensed under the **[MIT license](https://opensource.org/licenses/MIT)**.
## Video Tutorials
| Topic | Video |
|-------|--------|
| Introduction | [![Introduction](https://img.youtube.com/vi/Fn1lQjC0GO0/0.jpg)](https://www.youtube.com/watch?v=Fn1lQjC0GO0) |
| Tools Overview | [![Tools Overview](https://img.youtube.com/vi/XaQRgRpV7jo/0.jpg)](https://www.youtube.com/watch?v=XaQRgRpV7jo) |
| Custom Tools | [![Custom Tools](https://img.youtube.com/vi/JSU2Rndh06c/0.jpg)](https://www.youtube.com/watch?v=JSU2Rndh06c) |
| Firecrawl Integration | [![Firecrawl](https://img.youtube.com/vi/UoqUDcLcOYo/0.jpg)](https://www.youtube.com/watch?v=UoqUDcLcOYo) |
| User Interface | [![UI](https://img.youtube.com/vi/tg-ZjNl3OCg/0.jpg)](https://www.youtube.com/watch?v=tg-ZjNl3OCg) |
| Crawl4AI Integration | [![Crawl4AI](https://img.youtube.com/vi/KAvuVUh0XU8/0.jpg)](https://www.youtube.com/watch?v=KAvuVUh0XU8) |
| Chat Interface | [![Chat](https://img.youtube.com/vi/sw3uDqn2h1Y/0.jpg)](https://www.youtube.com/watch?v=sw3uDqn2h1Y) |
| Code Interface | [![Code](https://img.youtube.com/vi/_5jQayO-MQY/0.jpg)](https://www.youtube.com/watch?v=_5jQayO-MQY) |
| Mem0 Integration | [![Mem0](https://img.youtube.com/vi/KIGSgRxf1cY/0.jpg)](https://www.youtube.com/watch?v=KIGSgRxf1cY) |
| Training | [![Training](https://img.youtube.com/vi/aLawE8kwCrI/0.jpg)](https://www.youtube.com/watch?v=aLawE8kwCrI) |
| Realtime Voice Interface | [![Realtime](https://img.youtube.com/vi/frRHfevTCSw/0.jpg)](https://www.youtube.com/watch?v=frRHfevTCSw) |
| Call Interface | [![Call](https://img.youtube.com/vi/m1cwrUG2iAk/0.jpg)](https://www.youtube.com/watch?v=m1cwrUG2iAk) |
## License
Praison AI is an open-sourced software licensed under the **[MIT license](https://opensource.org/licenses/MIT)**.
", Assign "at most 3 tags" to the expected json: {"id":"9130","tags":[]} "only from the tags list I provide: [{"id":77,"name":"3d"},{"id":89,"name":"agent"},{"id":17,"name":"ai"},{"id":54,"name":"algorithm"},{"id":24,"name":"api"},{"id":44,"name":"authentication"},{"id":3,"name":"aws"},{"id":27,"name":"backend"},{"id":60,"name":"benchmark"},{"id":72,"name":"best-practices"},{"id":39,"name":"bitcoin"},{"id":37,"name":"blockchain"},{"id":1,"name":"blog"},{"id":45,"name":"bundler"},{"id":58,"name":"cache"},{"id":21,"name":"chat"},{"id":49,"name":"cicd"},{"id":4,"name":"cli"},{"id":64,"name":"cloud-native"},{"id":48,"name":"cms"},{"id":61,"name":"compiler"},{"id":68,"name":"containerization"},{"id":92,"name":"crm"},{"id":34,"name":"data"},{"id":47,"name":"database"},{"id":8,"name":"declarative-gui "},{"id":9,"name":"deploy-tool"},{"id":53,"name":"desktop-app"},{"id":6,"name":"dev-exp-lib"},{"id":59,"name":"dev-tool"},{"id":13,"name":"ecommerce"},{"id":26,"name":"editor"},{"id":66,"name":"emulator"},{"id":62,"name":"filesystem"},{"id":80,"name":"finance"},{"id":15,"name":"firmware"},{"id":73,"name":"for-fun"},{"id":2,"name":"framework"},{"id":11,"name":"frontend"},{"id":22,"name":"game"},{"id":81,"name":"game-engine "},{"id":23,"name":"graphql"},{"id":84,"name":"gui"},{"id":91,"name":"http"},{"id":5,"name":"http-client"},{"id":51,"name":"iac"},{"id":30,"name":"ide"},{"id":78,"name":"iot"},{"id":40,"name":"json"},{"id":83,"name":"julian"},{"id":38,"name":"k8s"},{"id":31,"name":"language"},{"id":10,"name":"learning-resource"},{"id":33,"name":"lib"},{"id":41,"name":"linter"},{"id":28,"name":"lms"},{"id":16,"name":"logging"},{"id":76,"name":"low-code"},{"id":90,"name":"message-queue"},{"id":42,"name":"mobile-app"},{"id":18,"name":"monitoring"},{"id":36,"name":"networking"},{"id":7,"name":"node-version"},{"id":55,"name":"nosql"},{"id":57,"name":"observability"},{"id":46,"name":"orm"},{"id":52,"name":"os"},{"id":14,"name":"parser"},{"id":74,"name":"react"},{"id":82,"name":"real-time"},{"id":56,"name":"robot"},{"id":65,"name":"runtime"},{"id":32,"name":"sdk"},{"id":71,"name":"search"},{"id":63,"name":"secrets"},{"id":25,"name":"security"},{"id":85,"name":"server"},{"id":86,"name":"serverless"},{"id":70,"name":"storage"},{"id":75,"name":"system-design"},{"id":79,"name":"terminal"},{"id":29,"name":"testing"},{"id":12,"name":"ui"},{"id":50,"name":"ux"},{"id":88,"name":"video"},{"id":20,"name":"web-app"},{"id":35,"name":"web-server"},{"id":43,"name":"webassembly"},{"id":69,"name":"workflow"},{"id":87,"name":"yaml"}]" returns me the "expected json"